- Browse by Subject
Browsing by Subject "Differential gene expression"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Coxiella burnetii Virulent Phase I and Avirulent Phase II Variants Differentially Manipulate Autophagy Pathway in Neutrophils(American Society for Microbiology, 2022) Kumaresan, Venkatesh; Wang, Juexin; Zhang, Wendy; Zhang, Yan; Xu, Dong; Zhang, Guoquan; Medical and Molecular Genetics, School of MedicineCoxiella burnetii is an obligate intracellular Gram-negative bacterium that causes Q fever in humans. The virulent C. burnetii Nine Mile phase I (NMI) strain causes disease in animal models, while the avirulent NM phase II (NMII) strain does not. In this study, we found that NMI infection induces severe splenomegaly and bacterial burden in the spleen in BALB/c mice, while NMII infection does not. A significantly higher number of CD11b+ Ly6G+ neutrophils accumulated in the liver, lung, and spleen of NMI-infected mice than in NMII-infected mice. Thus, neutrophil accumulation correlates with NMI and NMII infection-induced inflammatory responses. In vitro studies also demonstrated that although NMII exhibited a higher infection rate than NMI in mouse bone marrow neutrophils (BMNs), NMI-infected BMNs survived longer than NMII-infected BMNs. These results suggest that the differential interactions of NMI and NMII with neutrophils may be related to their ability to cause disease in animals. To understand the molecular mechanism underlying the differential interactions of NMI and NMII with neutrophils, global transcriptomic gene expressions were compared between NMI- and NMII-infected BMNs by RNA sequencing (RNA-seq) analysis. Interestingly, several genes involved in autophagy-related pathways, particularly membrane trafficking and lipid metabolism, are upregulated in NMII-infected BMNs but downregulated in NMI-infected BMNs. Immunofluorescence and immunoblot analyses indicate that compared to NMI-infected BMNs, vacuoles in NMII-infected-BMNs exhibit increased autophagic flux along with phosphatidylserine translocation in the cell membrane. Similar to neutrophils, NMII activated LC3-mediated autophagy in human macrophages. These findings suggest that the differential manipulation of autophagy of NMI and NMII may relate to their pathogenesis.Item Mirikizumab-Induced Transcriptome Changes in Ulcerative Colitis Patient Biopsies at Week 12 Are Maintained Through Week 52(Wolters Kluwer, 2023-11-01) Johnson, Travis; Steere, Boyd; Zhang, Pengyue; Zang, Yong; Higgs, Richard; Milch, Catherine; Reinisch, Walter; Panés, Julian; Huang, Kun; D’Haens, Geert; Krishnan, Venkatesh; Biostatistics and Health Data Science, Richard M. Fairbanks School of Public HealthIntroduction: Mirikizumab, an anti-interleukin-23p19 monoclonal antibody, demonstrated efficacy in phase 2 and 3 randomized clinical trials of patients with moderate-to-severe ulcerative colitis (UC). Previous results have shown that 12 weeks of mirikizumab treatment downregulated transcripts associated with UC disease activity and tumor necrosis factor inhibitor resistance. We assessed week-52 gene expression from week-12 responders receiving mirikizumab or placebo. Methods: In the phase 2 AMAC study (NCT02589665), mirikizumab-treated patients achieving week-12 clinical response were rerandomized to mirikizumab 200 mg subcutaneous every 4 or 12 weeks through week 52 (N = 31). Week-12 placebo responders continued placebo through week 52 (N = 7). The limma R package clustered transcript changes in colonic mucosa biopsies from baseline to week 12 into differentially expressed genes (DEGs). Among DEGs, similarly expressed genes (DEGSEGs) maintaining week-12 expression through week 52 were identified. Results: Of 89 DEGSEGs, 63 (70.8%) were present only in mirikizumab induction responders, 5 (5.6%) in placebo responders, and 21 (23.6%) in both. Week-12 magnitudes and week-52 consistency of transcript changes were greater in mirikizumab than in placebo responders (log2FC > 1). DEGSEG clusters (from 84 DEGSEGs identified in mirikizumab and mirikizumab/placebo responders) correlated to modified Mayo score (26/84 with Pearson correlation coefficient [PCC] >0.5) and Robarts Histopathology Index (55/84 with PCC >0.5), sustained through week 52. Discussion: Mirikizumab responders had broader, more sustained transcriptional changes of greater magnitudes at week 52 vs placebo. Mirikizumab responder DEGSEGs suggest a distinct molecular healing pathway associated with mirikizumab interleukin-23 inhibition. The cluster's correlation with disease activity illustrates relationships between clinical, endoscopic, and molecular healing in UC.Item Structural and genome-wide analyses suggest that transposon-derived protein SETMAR alters transcription and splicing(Elsevier, 2022) Chen, Qiujia; Bates, Alison M.; Hanquier, Jocelyne N.; Simpson, Edward; Rusch, Douglas B.; Podicheti, Ram; Liu, Yunlong; Wek, Ronald C.; Cornett, Evan M.; Georgiadis, Millie M.; Biochemistry and Molecular Biology, School of MedicineExtensive portions of the human genome have unknown function, including those derived from transposable elements. One such element, the DNA transposon Hsmar1, entered the primate lineage approximately 50 million years ago leaving behind terminal inverted repeat (TIR) sequences and a single intact copy of the Hsmar1 transposase, which retains its ancestral TIR-DNA-binding activity, and is fused with a lysine methyltransferase SET domain to constitute the chimeric SETMAR gene. Here, we provide a structural basis for recognition of TIRs by SETMAR and investigate the function of SETMAR through genome-wide approaches. As elucidated in our 2.37 Å crystal structure, SETMAR forms a dimeric complex with each DNA-binding domain bound specifically to TIR-DNA through the formation of 32 hydrogen bonds. We found that SETMAR recognizes primarily TIR sequences (∼5000 sites) within the human genome as assessed by chromatin immunoprecipitation sequencing analysis. In two SETMAR KO cell lines, we identified 163 shared differentially expressed genes and 233 shared alternative splicing events. Among these genes are several pre-mRNA-splicing factors, transcription factors, and genes associated with neuronal function, and one alternatively spliced primate-specific gene, TMEM14B, which has been identified as a marker for neocortex expansion associated with brain evolution. Taken together, our results suggest a model in which SETMAR impacts differential expression and alternative splicing of genes associated with transcription and neuronal function, potentially through both its TIR-specific DNA-binding and lysine methyltransferase activities, consistent with a role for SETMAR in simian primate development.