ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Diagnostic biomarker"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Comparative analysis of diagnostic platforms for measurement of differentially methylated insulin DNA
    (POL Scientific, 2019) Farr, Ryan J.; Wong, Wilson K. M.; Maynard, Cody-lee; Tersey, Sarah A.; Mirmira, Raghavendra G.; Hardikar, Anandwardhan A.; Joglekar, Mugdha V.; Pediatrics, IU School of Medicine
    Circulating cell-free DNA (cfDNA) has been intensively investigated as a diagnostic and prognostic marker for various cancers. In recent years, presence of unmethylated insulin cfDNA in the circulation has been correlated with pancreatic β-cell death and risk of developing type 1 diabetes. Digital (d)PCR is an increasingly popular method of quantifying insulin cfDNA due to its ability to determine absolute copy numbers, and its increased sensitivity when compared to the more routinely used quantitative PCR. Multiple platforms have been developed to carry out dPCR. However, not all technologies perform comparably, thereby necessitating evaluation of each platform. Here, we compare two dPCR platforms: the QuantStudio 3D (QS3D, Applied Biosystems) and the QX200 (Bio-Rad), to measure copies of unmethylated/methylated insulin plasmids. The QS3D detected greater copy numbers of the plasmids than the QX200 (manual mode), whereas QX200 demonstrated minimal replicate variability, increased throughput, ease of use and the potential for automation. Overall, the performance of QX200, in our hands, was better suited to measure differentially methylated insulin cfDNA.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University