- Browse by Subject
Browsing by Subject "Diabetic neuropathy"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Impaired expression of neuronal nitric oxide synthase in the gracile nucleus is involved in neuropathic changes in Zucker Diabetic Fatty rats with and without 2,5-hexanedione intoxication(Elsevier, 2016-05) Ma, Sheng-Xing; Peterson, Richard G.; Magee, Edward M.; Lee, Paul; Lee, Wai-Nang Paul; Li, Xi-Yan; Department of Anatomy & Cell Biology, IU School of MedicineThese studies examined the influence of 2,5-hexanedione (2,5-HD) intoxication on expression of neuronal nitric oxide synthase (nNOS) in the brainstem nuclei in Zucker Diabetic Fatty (ZDF) vs. lean control (LC) rats. Functional neuropathic changes were also investigated following axonal damage and impaired axonal transport induced by the treatment. Animals were intoxicated by i.p. injection of 2,5-HD plus unilateral administration of 2,5-HD over the sciatic nerve. The mechanical thresholds and withdrawal latencies to heat and cold stimuli on the foot were measured at baseline and after intoxication. The medulla sections were examined by nNOS immunohistochemistry and NADPH-diaphorase histochemistry at the end of the treatments. The mechanical thresholds and withdrawal latencies were significantly decreased while nNOS immunostained neurons and NADPH-diaphorase positive cells were selectively reduced in the gracile nucleus at baseline in ZDF vs. LC rats. NADPH-diaphorase reactivity and nNOS positive neurons were increased in the ipsilateral gracile nucleus in LC rats following 2,5-HD intoxication, but its up-regulation was attenuated in ZDF rats. These results suggest that diabetic and chemical intoxication-induced nNOS expression is selectively reduced in the gracile nucleus in ZDF rats. Impaired axonal damage-induced nNOS expression in the gracile nucleus is involved in neuropathic pathophysiology in type II diabetic rats.Item The impact of canagliflozin on the risk of neuropathy events: A post-hoc exploratory analysis of the CREDENCE trial(Elsevier, 2022) Liao, Jinlan; Kang, Amy; Xia, Chao; Young, Tamara; Di Tanna, Gian Luca; Arnott, Clare; Pollock, Carol; Krishnan, Arun V.; Agarwal, Rajiv; Bakris, George; Charytan, David M.; de Zeeuw, Dick; Heerspink, Hiddo J.L.; Levin, Adeera; Neal , Bruce; Wheeler, David C.; Zhang, Hong; Zinman, Bernard; Mahaffey, Kenneth W.; Perkovic, Vlado; Jardine, Meg J.; Smyth , Brendan; Medicine, School of MedicineAim: Canagliflozin reduces the risk, and progression, of diabetic kidney disease. We hypothesized that it may improve the microvascular complication of neuropathy. Methods: The CREDENCE trial randomized participants with type 2 diabetes and kidney disease to canagliflozin 100 mg daily or placebo. Neuropathy events were defined post-hoc as any reported adverse event consistent with a peripheral or autonomic neuropathy event. The effect of canagliflozin and predictors of neuropathy events were estimated using Cox regression analysis. In sensitivity analyses the endpoint was restricted to sensorimotor polyneuropathy, diabetic neuropathy, and non-autonomic neuropathy events. Results: Almost half (48.8%) of the 4401 participants had a diagnosis of neuropathy at baseline. Over a median of 2.45 years of follow up, 657 people experienced a neuropathy event (63.2 per 1000 patient-years). Independent factors associated with higher risk of experiencing neuropathy events were non-white race, younger age, higher glycated haemoglobin and lower estimated glomerular filtration rate. The incidence of neuropathy events was similar in people randomized to canagliflozin and placebo (334/2202 vs. 323/2199; HR 1.04, 95% CI 0.89 to 1.21, P = 0.66). Canagliflozin had no impact on sensorimotor polyneuropathy (HR 0.93, 95% CI 0.69 to 1.25, P = 0.63), diabetic neuropathy (HR 0.91, 95% CI 0.68 to 1.22, P = 0.52), or non-autonomic neuropathy (HR 1.03, 95% CI 0.87 to 1.21, P = 0.77). The lack of effect on neuropathy events was consistent in subgroup analyses. Conclusion: Canagliflozin did not affect the risk of neuropathy events in the CREDENCE trial. Future large randomized studies with prespecified neuropathy endpoints are required to determine the impact of sodium glucose cotransporter 2 inhibitors on diabetic neuropathy.