- Browse by Subject
Browsing by Subject "Dental Stress Analysis"
Now showing 1 - 10 of 21
Results Per Page
Sort Options
Item A Comparison of Shear-Peel Bond Forces of Flattened and Unaltered Brackets on Flattened and Curved Enamel Surfaces(2007) Wyatt, Tracy D.; Katona, Thomas R.; Baldwin, James J.; Hohlt, William F.; Moore, B. Keith; Shanks, James C.One aspect of bond strength testing that varies among researchers is the contour of the tooth and bracket bases that are tested. Unaltered teeth with as-manufactured brackets are the most commonly used combination. Flattened teeth with unaltered bracket bases and mechanically flattened teeth and brackets are also used. The intended purpose of this project was to determine the effect of tooth and bracket contour combinations on the shear, tension and torsional bond forces of bonded brackets. The crowns of two-hundred and four bovine incisors were potted in acrylic tubes with their facial surfaces slightly protruding. The facial surfaces of half of them were ground flat on a Wehmer model trimmer (The Wehmer Corporation, Lombard, IL). The remainder were contoured on a Wehmer model trimmer using a jig that rotated the tooth's facial surface on a radius of approximately 3 inches. One-hundred and two maxillary right central incisor brackets (3M Unitek, Monrovia, CA. Victory Series, .022 slot) were flattened, ten at a time with a 2000 N force on a self-leveling plate in the MTS Bionix testing machine (MTS Systems Corporation, Eden Prarie, MN). Another 102 brackets were unaltered. The Day 1 data set samples (shear-peel loading) were etched with 35% phosphoric acid gel and bonded with Transbond XT Light Cured Adhesive Paste (3m Unitek). This provided 17 specimens for each of four groups: curved tooth/curved bracket (C/C), curved tooth/flat bracket (C/F), flat tooth/curved bracket (F/C), and flat tooth/flat bracket (F /F). The samples were de-bonded in the MTS Bionix testing machine with the force applied parallel to the bracket base, (i.e., in shear-peel) and the peak forces were recorded. Due to large variations in the results and low forces compared with previously published studies from this laboratory, the bonding protocol and loading were altered for Day 2 testing. Rather than torsion loading, the shear-peel debond set was repeated. The following changes were made to the bonding protocol. The samples were pumiced following sanding and stored in fresh de-ionized water prior to bonding. The samples were also dried with compressed air following etching and the primer was thinned with compressed air. Following preparation the samples were debonded in the MTS Bionix testing machine and peak forces were recorded. These results were also inexplicably variable and relatively low. Day 3 samples, intended for torsion debonding, were bonded the same as the Day 2 samples except that a 3 7% phosphoric acid liquid (Reliance, Itasca IL) was used to etch the samples and a new bottle and tube of Trans bond XT Light Cured Adhesive Primer and Transbond XT Light Cured Adhesive Paste (3M Unitek) were used. The samples were also debonded in shear-peel in the MTS Bionix testing machine and peak forces were recorded. Despite the outlined efforts, these results were also scattered and relatively lower than obtained previously. An analysis of variance model was used to evaluate the bond forces and showed no statistical difference among the groups except that in the Day 2 data set the C/C group was significantly weaker than the F/F group (p= .0452). In the Day 3 data set the C/C group was also weaker than the F/F group though the results were not significant (p=.0739). There is a trend to suggest that the bracket base and crown curvatures may be important factors in determining shear bond force.Item A Frictional Evaluation of a New Surface-Modified Titanium Orthodontic Bracket(2000) Olsen, Marc E.; Oshida, Yoshiki; Andres, Carl J.; Katona, Thomas R.; Moore, B. Keith; Roberts, W. Eugene; Shanks, James C.Sliding mechanics is a popular method of moving teeth orthodontically. Sliding mechanics refers to the guiding of a tooth by means of the bracket slot along an archwire in response to some applied force. This concept of tooth movement is subject to both static and kinetic friction. An accurate evaluation of an appliance's frictional properties enables a clinician to identify applications where the utilization of a new appliance may be advantageous. The aim of this study was to evaluate the frictional properties of this new surface-modified titanium orthodontic bracket compared with a traditional stainless steel orthodontic bracket and a currently available non-surface modified titanium bracket. Fifteen brackets (5 Stainless steel, 5 Titanium, 5 Coated Titanium) were combined with five archwires from each material type (SS, NiTi, βTi). Frictional evaluation was completed on each bracket material utilizing .021" x .028" size archwire materials in a specially designed apparatus under wet conditions. The frictional resistance was measured on an Instron Universal Testing machine (Instron Corp, Canton, Mass). The brackets/archwire samples were tested one at a time individually. In addition, a single bracket/ archwire sample from each group was repeatedly tested five times. Measurements were made at every 0.1mm for 30mm via a computer attached to the testing machine. An ANOV A was used to determine differences between groups. The results indicate that stainless steel brackets exhibited significantly better static and kinetic frictional properties than the titanium brackets. Stainless steel wires possessed superior frictional properties to NiTi and β-Ti wires. NiTi wires were generally superior than β-Ti wires. As brackets and archwires were reused, the overall frictional values showed a distinct trend to increase.Item Bone Remodeling and Strain Variation Following Altered Mandibular Condyle Loading in Retired Breeder Rabbits(1993) Puntillo, Anthony M.; Garetto, Lawrence P.; Roberts, W. Eugene; Arbuckle, Gordon R.; Chen, Jie; Burr, David B.Several investigators have demonstrated modeling of the mandibular condyle foil following a change in load. A recent study evaluated the effect of age on the ability of the condyle to adapt to such a change. The present study explored the early changes in the mandibular condyles of retired breeder rabbits following an alteration in load, and attempted to quantify this load. Twelve female retired breeder New Zealand white rabbits were divided into four equal groups. Under general anesthesia strain gauges were placed on the lateral inferior body of the mandible bilaterally in two of the groups. Two days post-surgery acrylic splints were placed on the anterior teeth (resulting in a posterior open bite) of one the strain gauge groups and one group that did not receive strain gauges. The splints were maintained for 26 days. A control group received neither strain gauges nor splints. Intravital bone labels were administered to all groups to allow for histomorphometric analysis of condylar modeling and remodeling. In addition, principal strain measurements were recorded pre- and post-splint placement. The histomorphometric findings revealed a significant (p<.03) decrease in the subcondylar space of animals that received splints. Splinted animals also showed a significant increase in labeled surface area (p<.02) and in volume percent label (p<.05) of the trabeculae in the condylar neck region. In addition, surgical placement of the strain gauges significantly (p<.05) decreased the labeling of the periosteal surface in the neck region. The strain gauges proved functional in most rabbits for only a few days and registered large variations and no discernible differences in average maximum microstrain, and average change in microstrain. It was concluded from these results that an incisal prematurity (causing a posterior openbite), 26 days in duration, caused an increase functional load on the condyle. This load resulted in an increase in trabecular label and decrease in porosity of the subchondral plate. The decreased subcondylar space is possibly an indication of stiffening in this region. A stiffening of this nature has been suggested in previous studies to be a precursor to osteoarthritic degeneration.Item Comparative Tensile Strengths of Brackets Bonded to Porcelain with Orthodontic Adhesives and Porcelain Repair Systems(1986) Eustaquio, Robert I.; Garner, LaForrest D.; Barton, Paul; Hennon, David K.; Moore, B. Keith; Muñoz, Carlos; Shanks, James C.This study evaluated the feasibility of bonding brackets to porcelain for orthodontic purposes by measuring and comparing tensile strengths of five silane-based adhesive systems. Each adhesive system bonded mesh pad brackets to 10 glazed and 10 deglazed metal-ceramic crowns and the specimens were then thermocycled between 16 degrees and 56 degrees for 2500 cycles. Clinically relevant bond strengths, comparable to those of adhesives bonding brackets to enamel, were recorded for four of the systems compared. System l+ and Porcelain Primer had the highest mean values followed by Lee's Enamelite 500, then Vivadent's Silanit, Contact-Resin and Isopast, then 3M's Concise and Scotchprime. Most, if not all, failure sites for the four were at the bracket-resin interface. Two-way factorial analysis of variance demonstrated significant differences at P<.001 among the four adhesives but no contribution of surface effect, whether glazed or deglazed, was suggested statistically. Neuman-Keul sequential range tests showed significant differences between System l+ and the three other systems but no significant differences among the three were detected. Den-Mat's Ultrabond recorded extremely low tensile strength values and was of dubious clinical value. A t-test suggested that deglazing porcelain contributed no significant difference in strength compared with intact, glazed porcelain. All failure sites were at the porcelain-resin interface for this product. Since resin may remain bonded to porcelain following debonding, George Taub's diamond polishing paste and Shofu porcelain polishing wheels were compared as to their ability in restoring the porcelain to its original state. Because of the great adhesive bond of the resin to porcelain, craters, pits or tears may be created when resin is cleaned from porcelain with conventional scalers and pliers. The diamond paste gave a better restorative finish than the stones but the end result depended on the extent of original damage following cleaning. Orthodontists should take this point into account when considering bonding to porcelain crowns or veneers for esthetics sake where final risks may outweigh initial benefits. In a limited survey of 100 orthodontists responding to a questionnaire, 89% indicated that they have bonded or contemplated bonding to composite restored teeth, and 83% indicated that they have bonded or contemplated bonding to porcelain.Item Curing Front Shape and Velocity in Cylindrical Bulk-Filled Light-Cured Resin Composite(2001) Wright, Chad M.; Katona, Thomas R.; Baldwin, James J.; Shanks, James C.; Chen, Jie; Moore, B. KeithClinical failures of resin composite dental restorations are common phenomena. Such failures occur in part because of the polymerization shrinkage inherent to methacrylate-based materials. Numerous efforts have been attempted to reduce the deleterious effects of polymerization shrinkage. Despite such efforts, it appears that no simple solution to the problem exists. To effectively improve bonding methods, more information must be known about the polymerization process itself. By using the Finite Element Method (FEM), an accurate computer simulation model of the polymerization process may be created. Such a model may allow researchers to test the effects of alternative restorative and bonding techniques without actual in vitro experiments. To create an accurate computer model, much information about the transient events present during the curing process has yet to be obtained. In this non-clinical, data-gathering study, we: 1) verified that the shape of the curing front within a light-cured resin composite model is indeed convex, 2) determined that the curing front shape changes with depth of cure, and 3) measured the velocity of the curing front as it relates to curing light distance. Each of these observations and measurements has yielded information vital to the subsequent development of a resin composite polymerization model. It is anticipated that necessary data regarding other variables or aspects of the polymerization process will be obtained in subsequent research projects.Item The effect of a novel photoinitiator system (RAP) on dental resin composites' flexural strength, polymerization stress, and degree of conversion(2009) Schaub, Kellie; Platt, Jeffrey A., 1958-; Andres, Carl J., 1942-; Levon, John A.; Brown, David; Hovijitra, Suteena, 1944-Objectives: A new technology has been introduced into the field of dental resin composites that professes to enhance light-curing efficiency. Rapid amplified photopolymerization (RAP) initiator technology has not yet been fully compared with resin composites with conventional initiators such as camphorquinone (CQ). The purpose of this study was to compare and contrast the effects of this novel technology (RAP) on properties of two light-cured resin composites. Flowable (EFQ) and microfilled (ESQ) experimental composites were fabricated and supplied from Tokuyama Dental with (w/RAP) and without RAP (w/o RAP). The flexural strength (MPa) and flexural modulus (MPa) were obtained using a three-point bending apparatus (Sintech Renew 1123, Instron Engineering Corp., Canton, MA). Polymerization stress curves were created using a tensometer (American Dental Association Health Foundation, NIST, Gaithersburg, MD) which were then used to calculate the maximum stress rate. Finally, the degree of conversion was measured using infrared spectroscopy (Jassco FT-IR spectrometer, Model: 4100, Jasco Corporation, Tokyo, Japan). When evaluating the flexural strength, the peak stress for EFQ w/RAP was significantly higher than EFQ w/o RAP (p = 0.0001). This was statistically not significant for the ESQ group, even though ESQ w/RAP did have a higher peak stress then ESQ w/o RAP (p = 0.28). The interaction between resin type and RAP was not significant when evaluating the flexural modulus (p = 0.21). Formulations with RAP had a significantly higher flexural modulus then w/o RAP (p = 0.0001). Experimental resins with RAP had significantly higher maximum stress rates than those w/o RAP when evaluating polymerization stress (p = 0.0001). Finally, groups w/ RAP appeared to have a higher degree of conversion than groups without (p = 0.0057). This study showed that the experimental composites with RAP had greater mechanical properties than those without. Unfortunately, the increase in polymerization stress causes concern clinically due to the chance of leakage at the restoration/tooth interface. One of the main potential disadvantages of this new RAP technology is an increase in the polymerization stress. Deciding if this amount of polymerization stress is clinically acceptable is yet to be accomplished.Item The effect of inhibitor and initiator concentration on degree of conversion, flexural strength and polymerization shrinkage stress on resin-matrix composite(2009) Shaabin, Maram; Chu, Tien-Min Gabriel; Lund, Melvin R.; Matis, Bruce A.; Gonzalez-Cabezas, Carlos; Cochran, Michael A. (Michael Alan)Polymerization shrinkage is one of the most significant problems associated with resin-matrix composite. Shrinkage results in contraction stress in the resin, leading to possible debonding in certain areas of the adhesive joint and potentially adversely affecting the bond strength. The reduction in the stress may improve the adaptation of the resin restoration, and decrease the problems that are associated with contraction stress, such as postoperative pain and recurrent caries. Recently, it has been found that varying the inhibitor concentration would reduce the polymerization shrinkage without affecting mechanical properties. In this study, we investigated the effects of varying the initiator and initiator levels on polymerization shrinkage stress, strength, and degree of conversion. An experimental composite was prepared by using a blend of BisGMA: UDMA: TEGMA (1:1:1 weight ratio) with 70 wt% silanated glass fillers. Four levels of inhibitors (BHT 0.0 %, 2%, 6%, 20%) and initiators (CQ 2%, 6%, 20%, 60%) were used (total of 16 combinations). A tensiometer was used to measure the polymerization contraction stress, contraction stress rate and gel time for each resin. FTIR was used to measure the degree of conversion. The flexural strength and flexural modulus were determined using the three-point bending test. Resin-matrix composite with 0.0-percent BHT and 2.0-percent CQ showed the highest contraction stress and stress rate and the shortest gel time, while resin-matrix composite with the 6.0-percent BHT and 6-percent CQ showed the lowest contraction stress and stress rate and the longest gel time. At an extremely high concentrations of CQ (20 percent and 60 percent) and high BHT concentration (20 percent) low degree of conversion values were observed. Overall, from the collected data, group F (2-percent BHT and 6-percent CQ) and G (6-percent BHT and 6-percent CQ) provide the most desirable combination of strength (above 80 MPa) and stress (below 3 MPa) are present as a potential dose combination range of CQ and BHT. In conclusion, the effect of inhibitors and initiators appears to change in different resin formulation. Increasing the levels of both the inhibitor and the initiator decrease the polymerization contraction stress and stress rate, and the impact on the conversion is unpredictable. In this study, we found a decrease in both the conversion value and depth of cure.Item Effect of surface treatments on microtensile bond strength of repaired aged silorane resin composite(2010) Palasuk, Jadesada; Platt, Jeffrey A., 1958-; Levon, John A.; Brown, David T.; Hovijitra, Suteera, 1944-; Cho, Sopanis D.Background: A silorane based resin composite, Filtek LS restorative, has been introduced to overcome the polymerization shrinkage of the methacrylate based resin composite. The repair of resin composite may hold clinical advantages. Currently, there is no available information regarding the repair potential of silorane resin composite with either silorane or methacrylate based resin composite. Objectives: The purpose of this study was to compare the repaired microtensile bond strength of aged silorane resin composite using different surface treatments and either silorane or methacrylate based resin composite. Methods: One hundred and eight silorane resin composite blocks (Filtek LS) were fabricated and aged by thermocycling between 8oC and 48oC (5000 cycles). A control (solid resin composite) and four surface treatment groups (no treatment, acid treatment, aluminum oxide sandblasting and diamond bur abrasion) were tested. Each treatment group was randomly divided in half and repaired with either silorane resin composite (LS adhesive) or methacrylate based resin composite (Filtek Z250/Single Bond Plus). Specimens were 12 blocks and 108 beams per group. After 24 hours in 37oC distilled water, microtensile bond strength testing was performed using a non-trimming technique. Fracture surfaces were examined using an optical microscopy (20X) to determine failure mode. Data was analyzed using Weibull-distribution survival analysis. Results: Aluminum oxide sandblasting followed by silorane or methacrylate based resin composite and acid treatment with methacrylate based resin composite provided insignificant differences from the control (p>0.05). All other groups were significantly lower than the control. Failure was primarily adhesive in all groups. Conclusion: Aluminum oxide sandblasting produced comparable microtensile bond strength compared to the cohesive strength of silorane resin composite. After aluminum oxide sandblasting, aged silorane resin composite can be repaired with either silorane resin composite with LS system adhesive or methacrylate based resin composite with methacrylate based dentin adhesive.Item The Effects of Interbracket Position and Distance on the Orthodontic Triangular Loop(2003) Bulucea, Irina; Chen, Jie; Katona, Thomas R.; Baldwin, James J.; Roberts, W. Eugene; Shanks, James C.Orthodontic closing loops offer an efficient way to control the moment to force ratios (M/F) delivered during space closure. The triangular loop is often used in the Graduate Orthodontic Clinic at the Indiana University School of Dentistry. Previous studies on the triangular loop were concerned with various loop geometries. The present project was designed to study the triangular loop in a clinically realistic experimental set up. Compared to the previous studies, three major changes were implemented: instead of two coplanar brackets, the current study employed a bracketed typodont arch (1) the effects of loop locations (2) and different interbracket distances were considered (3). The measured moment and forces reflect considerable differences in the systems due to the new experimental set up. As in previous studies, the triangular loops were fabricated from 0.016 X 0.022- inch stainless steel wire. The loops were equilateral triangles with 8 mm sides, ligated to the arch wire by elastomeric rings. There were 4 loop locations: location 1 was at 1.2 mm away from the mesial bracket; location 2 was at 3 .2 mm away from the distal bracket; location 3 was centered in the middle of the original interbracket distance; location 4 was located 2.6 mm away from the mesial bracket. There were three interbracket distances (IB). The original IB (IBl) of 12.6 mm was decreased by 3 mm (IB 2) and by 6 mm (IB 3). The loops were activated by 1.6 mm and 3.3 mm. Force and moment components were measured along three mutual perpendicular axes (x, y, and z) corresponding to the buccolingual, mesiodistal, occlusogingival axes respectively. Comparisons of Mx/Fy and Mz/Fy at the mesial and distal, by three activation levels, three interbracket distances, and four locations, and all interaction effects, were performed using a mixed design repeated measures ANOV A procedure. The General Linear Model (GLM) procedure for unbalanced designs was used because not all interbracket distances could be accommodated with all loop locations. Activation distance was the within specimen repeated factor. Loop location and interbracket distance were the between specimen factor. It was theorized that the location of the triangular loop, as well as the interbracket distance, have a considerable effect on the generated M/F. The Null Hypothesis was that there are no significant differences (p > 0.05) in the M/F ratios generated by the triangular loop as the loop position changes relative to the brackets, and there are no significant differences (p>0.05) in the M/F ratios generated by the triangular loop as the interbracket distance becomes shorter with space closure. Statistical significant interactions were found for Mx/Fy and Mz/Fy at location 2, for all activations, at both the mesial and distal measures. Therefore we rejected the first part of the Null Hypothesis (no differences as the loop location changes), and accept the second part (no differences as the interbracket distance shortens). We were able to see clear trends at all loop locations, as well as interbracket distances, and draw useful clinical implications. We found that the mesial closing forces are quite small when compared to those at the distal. We attributed this discrepancy to the U shape geometry of the continuous arch wire technique. We observed that if closing loops are delivered with no activation, then counterproductive M/F ratios are produced. Our data also indicated that anchorage becomes more critical as the interbracket distance shortens. Finally, we determined that wire tie ligation for prevention of rotation along the long axis of the tooth is especially important for the lateral incisor.Item In-vitro wear and hardness of new conventional glass ionomer cement coated with nano-filled resin(2011) AlJamhan, Abdullah Saleh; Platt, Jeffrey Alan, 1958-; Matis, Bruce A.; Cochran, Michael A. (Michael Alan), 1944-; Cook, Norman Blaine, 1954-; Zandoná, Andréa G. Ferreira (Andréa Gonçalves Ferreira),1969-Background: Since the introduction of glass ionomer cements (GICs) in the 1970s, many attempts have been made to improve them and expand their application in restorative dentistry. Recently, GC America introduced a new glass ionomer restorative system called EQUIA. The manufacturer claims that this material has improved wear resistance by coating the surface of high-strength GIC with a nano-filled resin coating. Objective: The objective of this study was to measure the wear resistance and hardness of EQUIA and to compare it to other current restorative materials. Materials and Methods: Four different materials were used in this study: EQUIA, Fuji IX GP Extra, Fuji II LC and Z-100. Six specimens of each material were made and then tested in a toothbrush abrasion machine for 20,400 cycles, after which the amount of volume loss was calculated. Eight specimens of each material were made and tested in a three-body Alabama wear testing machine under a load of 75 N for 400,000 cycles. Four surface profiles were obtained from each specimen and volume loss was calculated using computer software. Five specimens of each material were made and Knoop microhardness was determined by using the mean of the three values from the top surface of the specimen. Results of each test were collected and compared with the other materials using one-way analysis of variance (ANOVA) at a significance level of 0.05. Results: Wear-resistance results showed that EQUIA has wear-resistance values comparable to composite resin and higher values than those for the high-strength GIC. The results also showed that Fuji II LC had the highest wear among all tested materials. Microhardness results showed that EQUIA has significantly lower microhardness than Fuji IX GP Extra and Z-100. Conclusion: Based on the results of the present study, it can be concluded that coating the surface of glass ionomer restorations with a nano-filled resin coat results in increasing the wear resistance and decreasing the microhardness of the material. Within the limitations of this study, EQUIA has comparable wear resistance to composite resin.
- «
- 1 (current)
- 2
- 3
- »