- Browse by Subject
Browsing by Subject "Dental Bonding"
Now showing 1 - 10 of 31
Results Per Page
Sort Options
Item A Comparison of Shear-Peel Bond Forces of Flattened and Unaltered Brackets on Flattened and Curved Enamel Surfaces(2007) Wyatt, Tracy D.; Katona, Thomas R.; Baldwin, James J.; Hohlt, William F.; Moore, B. Keith; Shanks, James C.One aspect of bond strength testing that varies among researchers is the contour of the tooth and bracket bases that are tested. Unaltered teeth with as-manufactured brackets are the most commonly used combination. Flattened teeth with unaltered bracket bases and mechanically flattened teeth and brackets are also used. The intended purpose of this project was to determine the effect of tooth and bracket contour combinations on the shear, tension and torsional bond forces of bonded brackets. The crowns of two-hundred and four bovine incisors were potted in acrylic tubes with their facial surfaces slightly protruding. The facial surfaces of half of them were ground flat on a Wehmer model trimmer (The Wehmer Corporation, Lombard, IL). The remainder were contoured on a Wehmer model trimmer using a jig that rotated the tooth's facial surface on a radius of approximately 3 inches. One-hundred and two maxillary right central incisor brackets (3M Unitek, Monrovia, CA. Victory Series, .022 slot) were flattened, ten at a time with a 2000 N force on a self-leveling plate in the MTS Bionix testing machine (MTS Systems Corporation, Eden Prarie, MN). Another 102 brackets were unaltered. The Day 1 data set samples (shear-peel loading) were etched with 35% phosphoric acid gel and bonded with Transbond XT Light Cured Adhesive Paste (3m Unitek). This provided 17 specimens for each of four groups: curved tooth/curved bracket (C/C), curved tooth/flat bracket (C/F), flat tooth/curved bracket (F/C), and flat tooth/flat bracket (F /F). The samples were de-bonded in the MTS Bionix testing machine with the force applied parallel to the bracket base, (i.e., in shear-peel) and the peak forces were recorded. Due to large variations in the results and low forces compared with previously published studies from this laboratory, the bonding protocol and loading were altered for Day 2 testing. Rather than torsion loading, the shear-peel debond set was repeated. The following changes were made to the bonding protocol. The samples were pumiced following sanding and stored in fresh de-ionized water prior to bonding. The samples were also dried with compressed air following etching and the primer was thinned with compressed air. Following preparation the samples were debonded in the MTS Bionix testing machine and peak forces were recorded. These results were also inexplicably variable and relatively low. Day 3 samples, intended for torsion debonding, were bonded the same as the Day 2 samples except that a 3 7% phosphoric acid liquid (Reliance, Itasca IL) was used to etch the samples and a new bottle and tube of Trans bond XT Light Cured Adhesive Primer and Transbond XT Light Cured Adhesive Paste (3M Unitek) were used. The samples were also debonded in shear-peel in the MTS Bionix testing machine and peak forces were recorded. Despite the outlined efforts, these results were also scattered and relatively lower than obtained previously. An analysis of variance model was used to evaluate the bond forces and showed no statistical difference among the groups except that in the Day 2 data set the C/C group was significantly weaker than the F/F group (p= .0452). In the Day 3 data set the C/C group was also weaker than the F/F group though the results were not significant (p=.0739). There is a trend to suggest that the bracket base and crown curvatures may be important factors in determining shear bond force.Item An Evaluation of the Bond Strength and Failure Site of Two Orthodontic Direct Bonding Systems(1979) Hyde, Kenneth R.; Garner, LaForrest; Tomich, Charles E.; Dirlam, James; Kasle, MyronTwo commercially available orthodontic direct bonding systems were evaluated for ultimate tensile strength and failure site. Both Endur (Ormco Corp.) and Solo-Tach (L. D. Caulk Co.) are Bis-GMA resin adhesives, but only Endur required the use of a sealant prior to bonding. Metal brackets intended for use with Endur are backed by a thin stainless steel pad and fine wire mesh. Bracket bases for use with Solo-Tach were fully perforated stainless steel pads (GAC International, Inc.). Two hundred human bicuspid teeth were divided into four groups to test the four combinations of bracket and adhesive types. Half of each group was tested 30 minutes after bonding and half was tested after 3 weeks, with thermocycling in the final week. Failure sites were completely opposite for these two adhesives regardless of which bracket type was used. Endur (sealant and adhesive) failed primarily at the bracket-adhesive interface, while Solo-Tach (adhesive only) failed primarily at the enamel-adhesive interface. The sealant-adhesive seems to form a more tenacious bond to enamel. Mesh bracket bases formed a significantly (p<.025) stronger bond than fully perforated bracket bases with either adhesive. Some difference was still apparent after correcting for the difference in base area between mesh and perforated base types. No significant difference in tensile bond strength were found between the two adhesives or between 30-minute and 3-week tests. It was noted that several other factors, such as protection of oral tissues, working time, and ease of manipulation must be evaluated in chasing a satisfactory bonding system.Item An Evaluation of the Bond Strength of Recycled Orthodontic Bonded Brackets(1981) Higgins, Duncan W.This investigation was designed to determine the effects of recycling orthodontic bonded attachments on bond strength. It was hypothesised that the reduction of the bracket mesh wire diameter as a result of electro-polishing may affect the bond at the mesh-resin interface. Ten brackets with brazed mesh were bonded to extracted bicuspid teeth and after 24 hours the mesh-resin bond was tested to failure in tension. The brackets were recycled in an Esmadent bracket reconditioner and rebonded to 10 fresh teeth. The process was repeated until the brackets had been recycled six times each and the bond strength determined for a total of 70 teeth, with the following results. 1. The mean bond strengths for each group were not significantly different at the .05 probability level. 2. There was no significant correlation between the number of cycles and bond strength. 3. After the brackets had been recycled five times, there were areas of missing mesh around the periphery of same brackets. It can be concluded that the primary factor limiting the number of times a bracket can be reused is the widening of the bracket slot, rather than the decrease in band strength.Item Clinical Evaluation of Glass Ionomer Cement as an Adhesive for the Bonding of Orthodontic Brackets(1988) Miller, James R.; Garner, LaForrest D.; Moore, B. Keith; Shanks, James C., Jr.; Barton, Paul; Potter, Rosario H.Glass ionomer cement has been shown in previous studies to retard decalcification and caries formation. This cement would be valuable in orthodontics if it proved to have adequate adhesive properties. Therefore, this study was designed to determine if there is a significant difference in the failure rate of brackets attached to teeth using a glass ionomer cement, Ketac-fil, and the failure rate of brackets attached to teeth using a conventional orthodontic adhesive system, Rely-a-bond. Six patients in the Department of Orthodontics at Indiana University School of Dentistry participated in this study. Each patient had 16 to 20 teeth available for bracketing. Direct-bond orthodontic brackets were attached to one-half of each participant's available teeth using Ketac-fil. Rely-a-bond was used to bond brackets to the remaining half of the teeth. Fifty-three brackets were placed with Ketac-fil, and 53 with Rely-a-bond. This study lasted a minimum of ten weeks for each patient. The following observations were made: 1) The failure rates for brackets attached with Ketac-fil and those attached with Rely-a-bond. 2) The type of bracket failure for brackets bonded with Ketac-fil. 3) Pre-study and post-study decalcification patterns of teeth with brackets attached with Ketac-fil. The bracket failure rate was 3.77% for the Ketac-fil group and 5.66% for the Rely-a-bond group. There was no significant difference between the failure rates of these two groups at the alpha = 0.05 level when tested with the Fisher Exact Probability Test. Of the two brackets that failed in the Ketac-fil group, only one was available for examination and it demonstrated a definite adhesive type of bracket failure. With respect to decalcification patterns, no obvious change in pattern occurred for teeth in the Ketac-fil group. There was no statistical difference between the failure rates of brackets attached with Ketac-fil and those attached with Rely-a-bond. Previous studies have shown that glass ionomer cements release fluoride and that this may retard decalcification and caries formation. Decalcification and caries formation around the margins of orthodontic brackets have been identified as potential risks of orthodontic treatment. Thus, the use of a glass ionomer cement as a bonding agent in orthodontics might reduce these potential risks without compromising the attachment of the brackets to teeth. This study provides the basis for more extensive clinical trials of glass ionomer cements as bonding agents for direct-bond orthodontic brackets.Item Comparative Tensile Strengths of Brackets Bonded to Porcelain with Orthodontic Adhesives and Porcelain Repair Systems(1986) Eustaquio, Robert I.; Garner, LaForrest D.; Barton, Paul; Hennon, David K.; Moore, B. Keith; Muñoz, Carlos; Shanks, James C.This study evaluated the feasibility of bonding brackets to porcelain for orthodontic purposes by measuring and comparing tensile strengths of five silane-based adhesive systems. Each adhesive system bonded mesh pad brackets to 10 glazed and 10 deglazed metal-ceramic crowns and the specimens were then thermocycled between 16 degrees and 56 degrees for 2500 cycles. Clinically relevant bond strengths, comparable to those of adhesives bonding brackets to enamel, were recorded for four of the systems compared. System l+ and Porcelain Primer had the highest mean values followed by Lee's Enamelite 500, then Vivadent's Silanit, Contact-Resin and Isopast, then 3M's Concise and Scotchprime. Most, if not all, failure sites for the four were at the bracket-resin interface. Two-way factorial analysis of variance demonstrated significant differences at P<.001 among the four adhesives but no contribution of surface effect, whether glazed or deglazed, was suggested statistically. Neuman-Keul sequential range tests showed significant differences between System l+ and the three other systems but no significant differences among the three were detected. Den-Mat's Ultrabond recorded extremely low tensile strength values and was of dubious clinical value. A t-test suggested that deglazing porcelain contributed no significant difference in strength compared with intact, glazed porcelain. All failure sites were at the porcelain-resin interface for this product. Since resin may remain bonded to porcelain following debonding, George Taub's diamond polishing paste and Shofu porcelain polishing wheels were compared as to their ability in restoring the porcelain to its original state. Because of the great adhesive bond of the resin to porcelain, craters, pits or tears may be created when resin is cleaned from porcelain with conventional scalers and pliers. The diamond paste gave a better restorative finish than the stones but the end result depended on the extent of original damage following cleaning. Orthodontists should take this point into account when considering bonding to porcelain crowns or veneers for esthetics sake where final risks may outweigh initial benefits. In a limited survey of 100 orthodontists responding to a questionnaire, 89% indicated that they have bonded or contemplated bonding to composite restored teeth, and 83% indicated that they have bonded or contemplated bonding to porcelain.Item Comparison of Tensile Bond Strengths of Glass Ionomer Cements Using Hydroxyapatite Coated and Uncoated Orthodontic Brackets(1993) Ng, Richard I. Cheng Hin; Hohlt, William F.; Moore, B. Keith; Oshida, Yoshiki; Garetto, Lawrence P.; Roberts, W. Eugene; Shanks, James C.The use of glass ionomer cements (GIC) in orthodontics as a bonding agent has been receiving considerable attention due to its favorable properties, ie., physico-chemical adhesion to enamel, fluoride leaching capabilities and less traumatic bonding procedure to tooth structure. GIC ability to bond to the hydroxyapatite (HA) in the tooth enamel was tested utilizing an HA coated bracket developed by American Orthodontics. This study compared in vitro tensile bond strengths of four dental adhesives: Ketac-cem™ (KC), Vitrebond™ (VB), Transbond™ (TB) or Unite™ (UN), when used to bond to HA coated brackets and non-HA coated brackets. Bovine incisors were divided into eight groups of 20 specimens each. Each group included either an HA coated or non-HA coated bracket and one of the four adhesives. The brackets are manufactured with a Tricalcium Phosphate (TPC) coating, which is converted to an HA coating by the addition of -OH during autoclaving. The coated and non-coated brackets were bonded to the bovine teeth, which were embedded in epoxy resin blocks to fabricate the testing specimen. All of the specimens were stored in distilled water at room temperature for two weeks. This was followed by thermocycling after which the specimens were returned to water storage for an additional two weeks. The specimens were tested in tension on an lnstron Testing Machine until bond failure occurred. Mode of bond failure was determined visually by light microscope. The mean tensile bond strengths for KC and VB were each significantly less (p< 0.05) than the other three materials, while UN and TB were not significantly different. KC was the weakest at 0.68± 0.31 MPa, while UN was the strongest, 4.38±0.84 MPa. When comparing the GIG alone, there was a significant difference (p<0.0001) between the VB and the KC. The resins were not significantly different from each other. Differences between coated and non-coated were significant at p<0.05 with the noncoated brackets having the higher strength. Adhesive failure at the bracket interface for the two bracket types showed no difference for KC. TB and UN showed this type of failure significantly more with the coated brackets (p<0.05), and VB showed the opposite and more failure with non-coated brackets (p<0.01). The tensile bond strength of GIG continues to be significantly less than those of existing resins. The bond failure also revealed a high degree of within group variability. Trends relating failure mode to tensile bond strength could not be established. Greater bond strengths with the coated brackets and the GIG were not shown; however in the case of VB, the tendency for the coated brackets to fail less frequently at the bracket adhesive interface shows some promise. Further studies of these coated brackets are still warranted.Item Effect of surface treatments on microtensile bond strength of repaired aged silorane resin composite(2010) Palasuk, Jadesada; Platt, Jeffrey A., 1958-; Levon, John A.; Brown, David T.; Hovijitra, Suteera, 1944-; Cho, Sopanis D.Background: A silorane based resin composite, Filtek LS restorative, has been introduced to overcome the polymerization shrinkage of the methacrylate based resin composite. The repair of resin composite may hold clinical advantages. Currently, there is no available information regarding the repair potential of silorane resin composite with either silorane or methacrylate based resin composite. Objectives: The purpose of this study was to compare the repaired microtensile bond strength of aged silorane resin composite using different surface treatments and either silorane or methacrylate based resin composite. Methods: One hundred and eight silorane resin composite blocks (Filtek LS) were fabricated and aged by thermocycling between 8oC and 48oC (5000 cycles). A control (solid resin composite) and four surface treatment groups (no treatment, acid treatment, aluminum oxide sandblasting and diamond bur abrasion) were tested. Each treatment group was randomly divided in half and repaired with either silorane resin composite (LS adhesive) or methacrylate based resin composite (Filtek Z250/Single Bond Plus). Specimens were 12 blocks and 108 beams per group. After 24 hours in 37oC distilled water, microtensile bond strength testing was performed using a non-trimming technique. Fracture surfaces were examined using an optical microscopy (20X) to determine failure mode. Data was analyzed using Weibull-distribution survival analysis. Results: Aluminum oxide sandblasting followed by silorane or methacrylate based resin composite and acid treatment with methacrylate based resin composite provided insignificant differences from the control (p>0.05). All other groups were significantly lower than the control. Failure was primarily adhesive in all groups. Conclusion: Aluminum oxide sandblasting produced comparable microtensile bond strength compared to the cohesive strength of silorane resin composite. After aluminum oxide sandblasting, aged silorane resin composite can be repaired with either silorane resin composite with LS system adhesive or methacrylate based resin composite with methacrylate based dentin adhesive.Item The Effect of Thermocycling on the Failure Load of a Standard Orthodontic Resin in Shear-Peel, Tension, and Torsion(2006) Bunch, Jason Keith; Katona, Thomas R.; Baldwin, James J.; Hohlt, William F.; Moore, B. Keith; Shanks, James C.New products are frequently developed for bonding brackets. This continuum brings about incessant studies attempting to prove or disprove their value. The need to compare the results of bond failure studies is made difficult if not impossible by the variation of published testing methods. The purpose of this study is to compare the differential effects of thermocycling, as a lab protocol, on three debonding techniques, shear-peel, tension, and torsion when using a traditional orthodontic resin adhesive. A standard orthodontic resin, Transbond™ XT (3M Unitek, Monrovia, CA) was used to bond 102 flattened 0.018-inch stainless steel brackets (3M Unitek) to flattened bovine incisors. Two step acid etching and priming (37 % phosphoric acid gel and Transbond MIP Primer, 3M Unitek) was used to prepare the enamel for bonding. During bonding, the resin thickness was held consistent. The bonding was accomplished under controlled temperature and humidity. Half of the samples were thermocycled prior to debonding. The samples were debonded in shear-peel, tension, and torsion. The data showed no significant differences between thermocycling and nonthermocycling in shear-peel or torsion, but in tension the thermocycling group had a statistically significant higher failure load. Overall, was a trend toward increased bond strength in the thermocycled group. The increase is likely the result of continued polymerization during thermocycling. The statistical difference that is noted in tension is thought to be due to the location of the highest stress being in the center of the resin pad. This would be the location of the least initial polymerization. The use of thermocycling as a lab protocol during bracket failure studies in shear-peel and torsion is not necessary when using traditional orthodontic resin.Item The Effect of Wire Fixation Methods on the Measured Force Systems of a T-Loop Orthodontic Spring(1997) Gregg, Joseph R.; Chen, Jie; Baldwin, James J.; Katona, Thomas R.; Shanks, James C.Ideal orthodontic springs are able to provide a controlled moment-to-force (M/F) ratio and a low load deflection rate. A great deal of research has gone into describing force systems generated by orthodontic springs. Most studies investigating the force system generated by T-loops have used rigid fixation for the spring ends. This is practical for laboratory studies, but it does not truly represent clinical situations in which orthodontic brackets are used to anchor spring ends. Results from laboratory studies have been applied to clinical situations without regard to what effect, if any, the method of end fixation may have. It is the goal of this study to determine the effects of spring fixation on generated force systems. The springs were held by rigid fixation and bracket ligation with either elastomeric or steel ligature ties. Comparison of these fixation methods was made by testing T-loops of different dimensions, with and without heat treatment at various activation distances. In theory, the wire is ligated rigidly against the bracket, so that the combination acts as a single unit by rigid fixation. Thus, there should be no difference between the generated force systems when spring ends are held by rigid fixation, or when they are held in place with orthodontic brackets and ligated by either elastomeric or steel ligature ties. However, the results indicate that are significant differences among the methods of fixation for each spring variation and heat treatment. The rigid fixation method consistently produced smaller moments and M/F ratios for all springs with every activation and heat treatment combination.Item Effectiveness of universal adhesive bonding agents on the shear bond strength to lithium disilicate ceramics(2015) AlRabiah, Mohammed A.; Platt, Jeffery A.; Levon, John A.; Brown, David T.; Chu, Tien-Min Gabriel; Bottino, Marco C.Background: All-ceramic restorations have excellent esthetic outcomes compared with other restorative materials. Lithium disilicate is classified as one of many silica-based all-ceramic materials. Currently, companies have provided single-step adhesives, known as universal adhesives, compatible with different restorative materials including lithium disilicate. Many studies have reported greater bond strengths when using a silane to treat the lithium disilicate before applying the bonding agent. Moreover, few studies were published comparing the bond strength when using the universal adhesive alone. Purpose: The objective of this study was to evaluate and compare shear bond strength of three universal adhesives to lithium disilicate ceramic restorative material. Materials and Methods: Three universal adhesive bonding agents were selected from commercially available adhesives. 408 IPS e.max CAD ceramic discs were processed, fired, and etched for 20s. The specimens were divided into six groups. The first three groups used the universal adhesive directly. The remaining three groups were treated with silane. Then, a composite resin cylinder was placed on top of the adhesive using a bonding jig. Each group was subdivided into four equal subgroups (n = 17), subjected to different aging simulation procedures: 24 h, one month with 5000 thermocycles, two months with 5000 cycles, and three months with 5000 cycles. Then, specimens were debonded using shear force by a universal testing machine (MTS). Results: Shear bond strength was greater with silane than without silane (p < 0.0001), regardless of the levels of adhesive or time. Shear bond strength was significantly greater at 24h and 1m than at 2m (p < 0.0001) or 3m (p < 0.0001) regardless of the adhesive or the presence of silane. Debonded specimens were examined under a stereomicroscope at X45 magnification to evaluate the fracture pattern. SEM was used to prove the results were considered as mixed failure. Conclusion: The optimal bonds to lithium disilicate are achieved by application of silane prior to application of a universal adhesive. Although the constituent silane in the universal adhesive was not effective in optimizing the resin to ceramic bond, silane should always be applied to lithium disilicate prior to bonding.