ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Data uncertainty"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Hyper-structure mining of frequent patterns in uncertain data streams
    (Springer Nature, 2013) HewaNadungodage, Chandima; Xia, Yuni; Lee, Jaehwan John; Tu, Yi-Cheng; Computer and Information Science, Purdue School of Science
    Data uncertainty is inherent in many real-world applications such as sensor monitoring systems, location-based services, and medical diagnostic systems. Moreover, many real-world applications are now capable of producing continuous, unbounded data streams. During the recent years, new methods have been developed to find frequent patterns in uncertain databases; nevertheless, very limited work has been done in discovering frequent patterns in uncertain data streams. The current solutions for frequent pattern mining in uncertain streams take a FP-tree-based approach; however, recent studies have shown that FP-tree-based algorithms do not perform well in the presence of data uncertainty. In this paper, we propose two hyper-structure-based false-positive-oriented algorithms to efficiently mine frequent itemsets from streams of uncertain data. The first algorithm, UHS-Stream, is designed to find all frequent itemsets up to the current moment. The second algorithm, TFUHS-Stream, is designed to find frequent itemsets in an uncertain data stream in a time-fading manner. Experimental results show that the proposed hyper-structure-based algorithms outperform the existing tree-based algorithms in terms of accuracy, runtime, and memory usage.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University