ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Data collection procedures"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    E-scooter Rider Detection System in Driving Environments
    (2021-08) Apurv, Kumar; Zheng, Jiang; Tian, Renran; Tsechpenakis, Gavriil
    E-scooters are ubiquitous and their number keeps escalating, increasing their interactions with other vehicles on the road. E-scooter riders have an atypical behavior that varies enormously from other vulnerable road users, creating new challenges for vehicle active safety systems and automated driving functionalities. The detection of e-scooter riders by other vehicles is the first step in taking care of the risks. This research presents a novel vision-based system to differentiate between e-scooter riders and regular pedestrians and a benchmark dataset for e-scooter riders in natural environments. An efficient system pipeline built using two existing state-of-the-art convolutional neural networks (CNN), You Only Look Once (YOLOv3) and MobileNetV2, performs detection of these vulnerable e-scooter riders.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University