- Browse by Subject
Browsing by Subject "Data augmentation"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Design Space Exploration of MobileNet for Suitable Hardware Deployment(2020-05) Sinha, Debjyoti; El-Sharkawy, Mohamed; King, Brian; Rizkalla, MaherDesigning self-regulating machines that can see and comprehend various real world objects around it are the main purpose of the AI domain. Recently, there has been marked advancements in the field of deep learning to create state-of-the-art DNNs for various CV applications. It is challenging to deploy these DNNs into resource-constrained micro-controller units as often they are quite memory intensive. Design Space Exploration is a technique which makes CNN/DNN memory efficient and more flexible to be deployed into resource-constrained hardware. MobileNet is small DNN architecture which was designed for embedded and mobile vision, but still researchers faced many challenges in deploying this model into resource limited real-time processors. This thesis, proposes three new DNN architectures, which are developed using the Design Space Exploration technique. The state-of-the art MobileNet baseline architecture is used as foundation to propose these DNN architectures in this study. They are enhanced versions of the baseline MobileNet architecture. DSE techniques like data augmentation, architecture tuning, and architecture modification have been done to improve the baseline architecture. First, the Thin MobileNet architecture is proposed which uses more intricate block modules as compared to the baseline MobileNet. It is a compact, efficient and flexible architecture with good model accuracy. To get a more compact models, the KilobyteNet and the Ultra-thin MobileNet DNN architecture is proposed. Interesting techniques like channel depth alteration and hyperparameter tuning are introduced along-with some of the techniques used for designing the Thin MobileNet. All the models are trained and validated from scratch on the CIFAR-10 dataset. The experimental results (training and testing) can be visualized using the live accuracy and logloss graphs provided by the Liveloss package. The Ultra-thin MobileNet model is more balanced in terms of the model accuracy and model size out of the three and hence it is deployed into the NXP i.MX RT1060 embedded hardware unit for image classification application.Item Endoscopic sleeve gastroplasty: stomach location and task classification for evaluation using artificial intelligence(Springer, 2024) Dials, James; Demirel, Doga; Sanchez-Arias, Reinaldo; Halic, Tansel; De, Suvranu; Gromski, Mark A.; Medicine, School of MedicinePurpose: We have previously developed grading metrics to objectively measure endoscopist performance in endoscopic sleeve gastroplasty (ESG). One of our primary goals is to automate the process of measuring performance. To achieve this goal, the repeated task being performed (grasping or suturing) and the location of the endoscopic suturing device in the stomach (Incisura, Anterior Wall, Greater Curvature, or Posterior Wall) need to be accurately recorded. Methods: For this study, we populated our dataset using screenshots and video clips from experts carrying out the ESG procedure on ex vivo porcine specimens. Data augmentation was used to enlarge our dataset, and synthetic minority oversampling (SMOTE) to balance it. We performed stomach localization for parts of the stomach and task classification using deep learning for images and computer vision for videos. Results: Classifying the stomach's location from the endoscope without SMOTE for images resulted in 89% and 84% testing and validation accuracy, respectively. For classifying the location of the stomach from the endoscope with SMOTE, the accuracies were 97% and 90% for images, while for videos, the accuracies were 99% and 98% for testing and validation, respectively. For task classification, the accuracies were 97% and 89% for images, while for videos, the accuracies were 100% for both testing and validation, respectively. Conclusion: We classified the four different stomach parts manipulated during the ESG procedure with 97% training accuracy and classified two repeated tasks with 99% training accuracy with images. We also classified the four parts of the stomach with a 99% training accuracy and two repeated tasks with a 100% training accuracy with video frames. This work will be essential in automating feedback mechanisms for learners in ESG.