- Browse by Subject
Browsing by Subject "DNA methyltransferase"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item A phase 1 study of combined guadecitabine and cisplatin in platinum refractory germ cell cancer(Wiley, 2021) Albany, Costantine; Fazal, Zeeshan; Singh, Ratnakar; Bikorimana, Emmanuel; Adra, Nabil; Hanna, Nasser H.; Einhorn, Lawrence H.; Perkins, Susan M.; Sandusky, George E.; Christensen, Brock C.; Keer, Harold; Fang, Fang; Nephew, Kenneth P.; Spinella, Michael J.; Medicine, School of MedicinePurpose: Germ cell tumors (GCTs) are cured with therapy based on cisplatin, although a clinically significant number of patients are refractory and die of progressive disease. Based on preclinical studies indicating that refractory testicular GCTs are hypersensitive to hypomethylating agents (HMAs), we conducted a phase I trial combining the next-generation HMA guadecitabine (SGI-110) with cisplatin in recurrent, cisplatin-resistant GCT patients. Methods: Patients with metastatic GCTs were treated for five consecutive days with guadecitabine followed by cisplatin on day 8, for a 28-day cycle for up to six cycles. The primary endpoint was safety and toxicity including dose-limiting toxicity (DLT) and maximum tolerated dose (MTD). Results: The number of patients enrolled was 14. The majority of patients were heavily pretreated. MTD was determined to be 30 mg/m2 guadecitabine followed by 100 mg/m2 cisplatin. The major DLTs were neutropenia and thrombocytopenia. Three patients had partial responses by RECIST criteria, two of these patients, including one with primary mediastinal disease, completed the study and qualified as complete responses by serum tumor marker criteria with sustained remissions of 5 and 13 months and survival of 16 and 26 months, respectively. The overall response rate was 23%. Three patients also had stable disease indicating a clinical benefit rate of 46%. Conclusions: The combination of guadecitabine and cisplatin was tolerable and demonstrated activity in patients with platinum refractory germ cell cancer.Item Epigenetic Targeting of Platinum Resistant Testicular Cancer(Bentham Science Publishers, 2016) Sonnenburg, Daniel; Spinella, Michael J.; Albany, Costantine; Department of Medicine, Indiana University School of MedicineThe involvement of epigenetic aberrations in the development and progression of tumors is now well established. However, little is known of the epigenetic alterations in testicular cancer and particularly in platinum refractory germ cell tumors. Germ cell derived testicular cancers, as compared to somatic tumors, appear to have a unique epigenetic profile that features more extensive DNA hypomethylation. Emerging data from clinical specimens suggest that epigenetic aberrations, especially DNA hypermethylation, can contribute to chemotherapy resistance and poor clinical outcomes in testicular germ cell tumors. Recent data indicate that testicular cancer cells, even those resistant to platinum, are highly sensitive to low doses of demethylating agents. Based on these promising preclinical studies, we suggest that DNA methylation inhibitors in combination with chemotherapeutic agents may offer a path to overcome acquired drug resistance in testicular cancer, laying the foundation and rationale for testing this class of epigenetic drugs in the clinical setting. In this mini-review we provide a brief overview of the promise of DNA methylation therapy to treat patients with refractory cancer of the testes.Item Structure-function analysis of CXXC finger protein 1(2009-04) Tate, Courtney Marie; Skalnik, David Gordon; Bigsby, Robert M.; Dynlacht, Joseph R.; Wek, Ronald C.This dissertation describes structure-function studies of CXXC finger protein 1 (Cfp1), encoded by the CXXC1 gene, in order to determine the functional significance of Cfp1 protein domains and properties. Cfp1 is an important regulator of chromatin structure and is essential for mammalian development. Murine embryonic stem (ES) cells lacking Cfp1 (CXXC1-/-) are viable but demonstrate a variety of defects, including hypersensitivity to DNA damaging agents, reduced plating efficiency and growth, decreased global and gene-specific cytosine methylation, failure to achieve in vitro differentiation, aberrant histone methylation, and subnuclear mis-localization of Setd1A, the catalytic component of a histone H3K4 methyltransferase complex, and tri-methylated histone H3K4 (H3K4me3) with regions of heterochromatin. Expression of wild-type Cfp1 in CXXC1-/- ES cells rescues the observed defects, thereby providing a convenient method to assess structure-function relationships of Cfp1. Cfp1 cDNA expression constructs were stably transfected into CXXC1-/- ES cells to evaluate the ability of various Cfp1 fragments and mutations to rescue the CXXC1-/- ES cell phenotype. These experiments revealed that expression of either the amino half of Cfp1 (amino acids 1-367) or the carboxyl half of Cfp1 (amino acids 361-656) is sufficient to rescue the hypersensitivity to DNA damaging agents, plating efficiency, cytosine and histone methylation, and differentiation defects. These results reveal that Cfp1 contains redundant functional domains for appropriate regulation of cytosine methylation, histone methylation, and in vitro differentiation. Additional studies revealed that a point mutation (C169A) that abolishes DNA-binding activity of Cfp1 ablates the rescue activity of the 1-367 fragment, and a point mutation (C375A) that abolishes the interaction of Cfp1 with the Setd1A and Setd1B histone H3K4 methyltransferase complexes ablates the rescue activity of the 361-656 Cfp1 fragment. In addition, introduction of both point mutations (C169A and C375A) ablates the rescue activity of the full-length Cfp1 protein. These results indicate that retention of either DNA-binding or Setd1 association of Cfp1 is required to rescue hypersensitivity to DNA damaging agents, plating efficiency, cytosine and histone methylation, and in vitro differentiation. In contrast, confocal immunofluorescence analysis revealed that full-length Cfp1 is required to restrict Setd1A and histone H3K4me3 to euchromatic regions.