- Browse by Subject
Browsing by Subject "DNA Replication"
Now showing 1 - 8 of 8
Results Per Page
Sort Options
Item Acetylation regulates DNA repair mechanisms in human cells(Informa UK (Taylor & Francis), 2016-06-02) Piekna-Przybylska, Dorota; Bambara, Robert A.; Balakrishnan, Lata; Department of Biology, School of ScienceThe p300-mediated acetylation of enzymes involved in DNA repair and replication has been previously shown to stimulate or inhibit their activities in reconstituted systems. To explore the role of acetylation on DNA repair in cells we constructed plasmid substrates carrying inactivating damages in the EGFP reporter gene, which should be repaired in cells through DNA mismatch repair (MMR) or base excision repair (BER) mechanisms. We analyzed efficiency of repair within these plasmid substrates in cells exposed to deacetylase and acetyltransferase inhibitors, and also in cells deficient in p300 acetyltransferase. Our results indicate that protein acetylation improves DNA mismatch repair in MMR-proficient HeLa cells and also in MMR-deficient HCT116 cells. Moreover, results suggest that stimulated repair of mismatches in MMR-deficient HCT116 cells is done though a strand-displacement synthesis mechanism described previously for Okazaki fragments maturation and also for the EXOI-independent pathway of MMR. Loss of p300 reduced repair of mismatches in MMR-deficient cells, but did not have evident effects on BER mechanisms, including the long patch BER pathway. Hypoacetylation of the cells in the presence of acetyltransferase inhibitor, garcinol generally reduced efficiency of BER of 8-oxoG damage, indicating that some steps in the pathway are stimulated by acetylation.Item Break-Induced Replication is a Source of Mutation Clusters Underlying Kataegis(Elsevier B.V., 2014-06) Sakofsky, Cynthia J.; Roberts, Steven A.; Malc, Ewa; Mieczkowski, Piotr A.; Resnick, Michael A.; Gordenin, Dmitry A.; Malkova, Anna; Department of Biology, School of ScienceClusters of simultaneous multiple mutations can be a source of rapid change during carcinogenesis and evolution. Such mutation clusters have been recently shown to originate from DNA damage within long single-strand (ss) DNA formed at resected double-strand breaks and dysfunctional replication forks. We identify here double-strand break (DSB)-induced replication (BIR) as another powerful source of mutation clusters that formed in nearly half of wild-type yeast cells undergoing BIR in the presence of alkylating damage. Clustered mutations were primarily formed along the track of DNA synthesis and were frequently associated with additional breakage and rearrangements. Moreover, the base specificity, strand coordination and strand bias of the mutation spectrum was consistent with mutations arising from damage in persistent ssDNA stretches within unconventional replication intermediates. Together, these features closely resemble kataegic events in cancers, suggesting that replication intermediates during BIR may be the most prominent source of mutation clusters across species.Item Characterization of the Termini of Cytoplasmic Hepatitis B Virus Deproteinated Relaxed Circular DNA(American Society for Microbiology, 2020-12-09) Cai, Dawei; Yan, Ran; Xu, Jerry Z.; Zhang, Hu; Shen, Sheng; Mitra, Bidisha; Marchetti, Alexander; Kim, Elena S.; Guo, Haitao; Microbiology and Immunology, School of MedicineThe biosynthesis of hepatitis B virus (HBV) covalently closed circular DNA (cccDNA) requires the removal of the covalently linked viral polymerase from the 5' end of the minus strand [(-)strand] of viral relaxed circular DNA (rcDNA), which generates a deproteinated rcDNA (DP-rcDNA) intermediate. In the present study, we systematically characterized the four termini of cytoplasmic HBV DP-rcDNA by 5'/3' rapid amplification of cDNA ends (RACE), 5' radiolabeling, and exonuclease digestion, which revealed the following observations: (i) DP-rcDNA and rcDNA possess an identical 3' end of (-)strand DNA; (ii) compared to rcDNA, DP-rcDNA has an extended but variable 3' end of plus strand [(+)strand] DNA, most of which is in close proximity to direct repeat 2 (DR2); (iii) DP-rcDNA exhibits an RNA primer-free 5' terminus of (+)strand DNA with either a phosphate or hydroxyl group; and (iv) the 5' end of the DP-rcDNA (-)strand is unblocked at nucleotide G1828, bearing a phosphate moiety, indicating the complete removal of polymerase from rcDNA via unlinking the tyrosyl-DNA phosphodiester bond during rcDNA deproteination. However, knockout of cellular 5' tyrosyl-DNA phosphodiesterase 2 (TDP2) did not markedly affect rcDNA deproteination or cccDNA formation. Thus, our work sheds new light on the molecular mechanisms of rcDNA deproteination and cccDNA biogenesis.IMPORTANCE The covalently closed circular DNA (cccDNA) is the persistent form of the hepatitis B virus (HBV) genome in viral infection and an undisputed antiviral target for an HBV cure. HBV cccDNA is converted from viral genomic relaxed circular DNA (rcDNA) through a complex process that involves removing the covalently bound viral polymerase from rcDNA, which produces a deproteinated-rcDNA (DP-rcDNA) intermediate for cccDNA formation. In this study, we characterized the four termini of cytoplasmic DP-rcDNA and compared them to its rcDNA precursor. While rcDNA and DP-rcDNA have an identical 3' terminus of (-)strand DNA, the 3' terminus of (+)strand DNA on DP-rcDNA is further elongated. Furthermore, the peculiarities on rcDNA 5' termini, specifically the RNA primer on the (+)strand and the polymerase on the (-)strand, are absent from DP-rcDNA. Thus, our study provides new insights into a better understanding of HBV rcDNA deproteination and cccDNA biosynthesis.Item Clarifying the Role of the CST Complex in DNA Replication and Repair(2021-12) Wysong, Brandon Carter; Balakrishnan, Lata; Marrs, James A.; Perrin, Benjamin J.Ends of linear chromosomes are maintained by specialized structures known as telomeres. These structures are protected by a number of essential protein complexes including the shelterin complex and CST (CTC1 – STN1 – TEN1) complex. CST is an RPA-like ssDNA binding protein that is vital for telomere length maintenance via inhibition of telomerase and stimulation of DNA polymerase α -primase during C-strand fill-in synthesis. CST is also known to possess additional genome-wide roles in regulating DNA replication and repair including helping facilitate replication re-start at stalled forks, activating checkpoint signaling at double-strand breaks, and promoting replication origin firing. Proper and efficient repair of DNA is critical in order to protect the integrity of the genome and prevent extreme mutagenesis. Telomeres have a strong predisposition to oxidative DNA damage in the form of 8-oxoguanine caused by exposure to reactive oxygen species and free radicals. These oxidative lesions are repaired by the base-excision repair (BER) pathway. Previous work has implicated telomeric proteins such as the shelterin complex in mediating BER. Here we show for the first time that the CST complex and individual subunits robustly stimulate a myriad of proteins involved in the BER pathway including Pol β, APE1, FEN1, and LIGI. CST’s ability to augment these BER-associated proteins could be instrumental in promoting efficient DNA repair. Additionally, we find that CTC1 and STN1 are able to significantly enhance the polymerase activity of Pol δ and Pol α on both random-sequence and telomeric-sequence DNA substrates in vitro. What is more, we establish the ability of CST to resolve G4 structure and promote Pol δ synthesis, which we predict is a key feature of CST’s involvement in DNA replication at telomeres, which are known to form replication-inhibiting G4’s. Our results define important mechanistic insight into CST’s role in DNA replication and repair, and provide a strong foundation for future studies relating defective telomere maintenance to aging disorders and cancers which impact human health.Item Defining the Role of Lysine Acetylation in Regulating the Fidelity of DNA Synthesis(2020-12) Ononye, Onyekachi Ebelechukwu; Balakrishnan, Lata; Watson, John; Baucum, AJ; Turchi, John; Bochman, MatthewAccurate DNA replication is vital for maintaining genomic stability. Consequently, the machinery required to drive this process is designed to ensure the meticulous maintenance of information. However, random misincorporation of errors reduce the fidelity of the DNA and lead to pre-mature aging and age-related disorders such as cancer and neurodegenerative diseases. Some of the incorporated errors are the result of the error prone DNA polymerase alpha (Pol α), which initiates synthesis on both the leading and lagging strand. Lagging strand synthesis acquires an increased number of polymerase α tracks because of the number of Okazaki fragments synthesized per round of the cell cycle (~50 million in mammalian cells). The accumulation of these errors invariably reduces the fidelity of the genome. Previous work has shown that these pol α tracks can be removed by two redundant pathways referred to as the short and long flap pathway. The long flap pathway utilizes a complex network of proteins to remove more of the misincorporated nucleotides than the short flap pathway which mediates the removal of shorter flaps. Lysine acetylation has been reported to modulate the function of the nucleases implicated in flap processing. The cleavage activity of the long flap pathway nuclease, Dna2, is stimulated by lysine acetylation while conversely lysine acetylation of the short flap pathway nuclease, FEN1, inhibits its activity. The major protein players implicated during Okazaki fragment processing (OFP) are known, however, the choice of the processing pathway and its regulation by lysine acetylation of its main players is yet unknown. This dissertation identifies three main findings: 1) Saccharomyces cerevisiae helicase, petite integration frequency (Pif1) is lysine acetylated by Esa1 and deacetylated by Rpd3 regulating its viability and biochemical properties including helicase, binding and ATPase activity ii) the single stranded DNA binding protein, human replication protein A (RPA) is modified by p300 and this modification stimulates its primary binding function and iii) lysine acetylated human RPA directs OFP towards the long flap pathway even for a subset of short flaps.Item Insight into the Dual Functions of Bacterial Enhancer-Binding Protein Rrp2 of Borrelia burgdorferi(American Society for Microbiology, 2016-05-15) Yin, Yanping; Yang, Youyun; Xiang, Xuwu; Wang, Qian; Yang, Zhang-Nv; Blevins, Jon; Lou, Yongliang; Yang, X. Frank; Department of Microbiology & Immunology, IU School of MedicineIt is well established that the RpoN-RpoS sigma factor (σ(54)-σ(S)) cascade plays an essential role in differential gene expression during the enzootic cycle of Borrelia burgdorferi, the causative agent of Lyme disease. The RpoN-RpoS pathway is activated by the response regulator/σ(54)-dependent activator (also called bacterial enhancer-binding protein [bEBP]) Rrp2. One unique feature of Rrp2 is that this activator is essential for cell replication, whereas RpoN-RpoS is dispensable for bacterial growth. How Rrp2 controls cell replication, a function that is independent of RpoN-RpoS, remains to be elucidated. In this study, by generating a series of conditional rrp2 mutant strains, we demonstrated that the N-terminal receiver domain of Rrp2 is required for spirochetal growth. Furthermore, a D52A point mutation at the phosphorylation site within the N terminus of Rrp2 abolished cell replication. Mutation of the ATPase motif within the central domain of Rrp2 did not affect spirochetal replication, indicating that phosphorylation-dependent ATPase activity of Rrp2 for σ(54) activation is not required for cell growth. However, deletion of the C-terminal domain or a 16-amino-acid truncation of the helix-turn-helix (HTH) DNA-binding motif within the C-terminal domain of Rrp2 abolished spirochetal replication. It was shown that constitutive expression of rpoS is deleterious to borrelial growth. We showed that the essential nature of Rrp2 is not due to an effect on rpoS These data suggest that phosphorylation-dependent oligomerization and DNA binding of Rrp2 likely function as a repressor, independently of the activation of σ(54), controlling an essential step of cell replication in B. burgdorferi IMPORTANCE: Bacterial enhancer-binding proteins (bEBPs) are a unique group of transcriptional activators specifically required for σ(54)-dependent gene transcription. This work demonstrates that the B. burgdorferi bEBP, Rrp2, has an additional function that is independent of σ(54), that of its essentiality for spirochetal growth, and such a function is dependent on its N-terminal signal domain and C-terminal DNA-binding domain. These findings expand our knowledge on bEBP and provide a foundation to further study the underlying mechanism of this new function of bEBP.Item Interferon-inducible ribonuclease ISG20 inhibits hepatitis B virus replication through directly binding to the epsilon stem-loop structure of viral RNA(PLOS, 2017-04-11) Liu, Yuanjie; Nie, Hui; Mao, Richeng; Mitra, Bidisha; Cai, Dawei; Yan, Ran; Guo, Ju-Tao; Block, Timothy M.; Mechti, Nadir; Guo, Haitao; Microbiology and Immunology, School of MedicineHepatitis B virus (HBV) replicates its DNA genome through reverse transcription of a viral RNA pregenome. We report herein that the interferon (IFN) stimulated exoribonuclease gene of 20 KD (ISG20) inhibits HBV replication through degradation of HBV RNA. ISG20 expression was observed at basal level and was highly upregulated upon IFN treatment in hepatocytes, and knock down of ISG20 resulted in elevation of HBV replication and attenuation of IFN-mediated antiviral effect. The sequence element conferring the susceptibility of HBV RNA to ISG20-mediated RNA degradation was mapped at the HBV RNA terminal redundant region containing epsilon (ε) stem-loop. Furthermore, ISG20-induced HBV RNA degradation relies on its ribonuclease activity, as the enzymatic inactive form ISG20D94G was unable to promote HBV RNA decay. Interestingly, ISG20D94G retained antiviral activity against HBV DNA replication by preventing pgRNA encapsidation, resulting from a consequence of ISG20-ε interaction. This interaction was further characterized by in vitro electrophoretic mobility shift assay (EMSA) and ISG20 was able to bind HBV ε directly in absence of any other cellular proteins, indicating a direct ε RNA binding capability of ISG20; however, cofactor(s) may be required for ISG20 to efficiently degrade ε. In addition, the lower stem portion of ε is the major ISG20 binding site, and the removal of 4 base pairs from the bottom portion of ε abrogated the sensitivity of HBV RNA to ISG20, suggesting that the specificity of ISG20-ε interaction relies on both RNA structure and sequence. Furthermore, the C-terminal Exonuclease III (ExoIII) domain of ISG20 was determined to be responsible for interacting with ε, as the deletion of ExoIII abolished in vitro ISG20-ε binding and intracellular HBV RNA degradation. Taken together, our study sheds light on the underlying mechanisms of IFN-mediated HBV inhibition and the antiviral mechanism of ISG20 in general.Item X autosome translocations in man studied with replication banding(1983) Keitges, Elisabeth Ann