- Browse by Subject
Browsing by Subject "DDH"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item The Demographics of Canine Hip Dysplasia in the United States and Canada(Hindawi Publishing Corporation, 2017) Loder, Randall T.; Todhunter, Rory J.; Orthopaedic Surgery, School of MedicineCanine hip dysplasia (CHD) is a common problem in veterinary medicine. We report the demographics of CHD using the entire hip dysplasia registry from the Orthopedic Foundation for Animals, analyzing differences by breed, sex, laterality, seasonal variation in birth, and latitude. There were 921,046 unique records. Each dog was classified using the American Kennel Club (AKC) and Fédération Cynologique Internationale (FCI) systems. Statistical analysis was performed with bivariate and logistic regression procedures. The overall CHD prevalence was 15.56%. The OR for CHD was higher in females (1.05), those born in spring (1.14) and winter (1.13), and those in more southern latitudes (OR 2.12). Within AKC groups, working dogs had the highest risk of CHD (OR 1.882) with hounds being the reference group. Within FCI groups, the pinscher/molossoid group had the highest risk of CHD (OR 4.168) with sighthounds being the reference group. The similarities between CHD and DDH are striking. Within DDH there are two different types, the typical infantile DDH and the late onset adolescent/adult acetabular dysplasia, with different demographics; the demographics of CHD are more similar to the later onset DDH group. Comparative studies of both disorders should lead to a better understanding of both CHD and DDH.Item Seasonal variation in children with developmental dysplasia of the hip(Sage, 2014) Loder, Randall T.; Shafer, Cody; Orthopaedic Surgery, School of MedicineBackground: It has been postulated that developmental dysplasia of the hip (DDH) is more frequent in infants born in the winter months. It was the purpose of this study to ascertain if there was any seasonal variation in DDH at the author's institution and compare/contrast our results with those in the literature using rigorous mathematical fitting. Methods: All children with DDH treated at the author's institution from 1993 to 2012 were identified. The month of birth was recorded and temporal variation was analyzed using cosinor analysis. Similar data from the literature was analyzed. Results: There were 424 children (363 girls, 61 boys). An additional 22,936 children were added from the literature for a total of 23,360. Pearson's Chi-square test demonstrated a non-uniform distribution in the month of birth for both our 424 children as well as the combined literature series in both the Northern and Southern hemispheres. Cosinor analysis of the 424 children demonstrated double peaks in mid-March and mid-October. For the entire 23,360 children, no seasonal variation was observed in 2,205 (9.4 %), a single winter peak in 16,425 (70.3 %), a single summer peak in 1,280 (5.5 %), and double peaks in the spring and autumn in 3,450 (14.8 %). Conclusions: This study partly supports the hypothesis of tight clothing/cold temperature as one factor in the etiology of DDH with the tighter clothing/swaddling increasing the risk of DDH. However ~20 % of the DDH births demonstrated a non-winter peak. The single summer and double spring/autumn peaks, as well as in those series where no seasonal variation was noted, refutes the cold winter clothing hypothesis. Perhaps these different patterns in seasonal variation represent the heterogeneity of the genetic factors in DDH interacting with external factors (temperature and clothing) and internal factors (metabolic). Further study will be required to understand these different patterns in DDH seasonal variation.