- Browse by Subject
Browsing by Subject "Cytoplasmic filaments"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Identification of altered Ras signaling and intermediate filament hyperphosphorylation in giant axonal neuropathy(2015) Martin, Kyle B.; Payne, R. Mark; Cummins, Theodore R.; Morral, Nuria; Wek, Ronald C.Giant axonal neuropathy (GAN) is a rare genetic disease that causes progressive damage to the nervous system. Neurons in GAN patients develop an abnormal organization of cytoskeletal proteins called intermediate filaments (IFs), which normally provide strength and support for the overall cell structure. The irregular IF structure in GAN patient neurons leads to a progressive loss of motor skills in children and subsequent death in adolescence. GAN is caused by reduced levels of the gigaxonin (Giga) protein. Giga functions to control the degradation of other cellular proteins, and the loss of Giga in GAN cells results in significantly elevated levels of the galectin-1 (Gal-1) protein. Gal-1 stabilizes the active form of the Ras signaling protein, which functions as a molecular switch to regulate the phosphorylation and subsequent organization of IFs. The connection between these pathways led us to propose that Giga regulates IF phosphorylation and structure by modulating Ras signaling through the degradation of Gal-1. Using GAN patient cells, we demonstrated that restoring Giga reduced Gal-1 protein levels, decreased IF phosphorylation, and reestablished normal IF organization. Similar effects of reduced IF phosphorylation and improved IF structure were also obtained in GAN cells by directly decreasing the protein levels of either Gal-1, or downstream Ras signaling proteins. Taken together, these results demonstrate that the loss of Giga induces Gal-1 mediated activation of Ras signaling, thereby leading to the increased IF phosphorylation and abnormal IF structure observed in GAN cells. Identification of aberrant Ras signaling is significant because it is the first to specify a mechanism by which the loss of Giga leads to the development of GAN and provides targets for novel drug therapies for the treatment of this currently immedicable genetic disease.Item Mechanisms and Consequences of Dopamine Depletion-Induced Attenuation of the Spinophilin/Neurofilament Medium Interaction(Hindawi, 2017) Hiday, Andrew C.; Edler, Michael C.; Salek, Asma B.; Morris, Cameron W.; Thang, Morrent; Rentz, Tyler J.; Rose, Kristie L.; Jones, Lisa M.; Baucum, Anthony J., II; Biology, School of ScienceSignaling changes that occur in the striatum following the loss of dopamine neurons in the Parkinson disease (PD) are poorly understood. While increases in the activity of kinases and decreases in the activity of phosphatases have been observed, the specific consequences of these changes are less well understood. Phosphatases, such as protein phosphatase 1 (PP1), are highly promiscuous and obtain substrate selectivity via targeting proteins. Spinophilin is the major PP1-targeting protein enriched in the postsynaptic density of striatal dendritic spines. Spinophilin association with PP1 is increased concurrent with decreases in PP1 activity in an animal model of PD. Using proteomic-based approaches, we observed dopamine depletion-induced decreases in spinophilin binding to multiple protein classes in the striatum. Specifically, there was a decrease in the association of spinophilin with neurofilament medium (NF-M) in dopamine-depleted striatum. Using a heterologous cell line, we determined that spinophilin binding to NF-M required overexpression of the catalytic subunit of protein kinase A and was decreased by cyclin-dependent protein kinase 5. Functionally, we demonstrate that spinophilin can decrease NF-M phosphorylation. Our data determine mechanisms that regulate, and putative consequences of, pathological changes in the association of spinophilin with NF-M that are observed in animal models of PD.