- Browse by Subject
Browsing by Subject "Cytochrome P450"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Characterization of Maternal and Fetal CYP3A-Mediated Progesterone Metabolism(Taylor & Francis, 2017-10) Quinney, Sara K.; Benjamin, Tara D.; Zheng, Xiaomei; Patil, Avinash; Obstetrics and Gynecology, School of MedicineINTRODUCTION: Progesterone is critical for maintaining pregnancy and onset of labor. We evaluated CYP450-mediated progesterone meta-bolism, specifically the contribution of CYP3A isoforms. MATERIALS AND METHODS: In vitro progesterone metabolism was characterized in human liver microsomes (HLMs) with and without selective cytochrome P450 inhibitors and in recombinant CYP3A4, CYP3A5, and CYP3A7. 6β-hydroxyprogesterone (6β-OHP) and 16α-hydroxyprogesterone (16α-OHP) metabolites were quantified by HPLC/UV and fit to the Michaelis-Menten equation to determine Km and Vmax. The effect of CYP3A5 expression on progesterone clearance was determined by in vitro in vivo extrapolation. RESULTS: Ketoconazole inhibited formation of both 6β-OHP and 16α-OHP more than 95%. 6β-OHP and 16α-OHP were both produced by CYP3A4 (2.3 and 1.3 µL/min/pmol, respectively) to a greater extent than by CYP3A5 (0.09 and 0.003 µL/min/pmol) and CYP3A7 (0.004 and 0.003 µL/min/pmol). CONCLUSIONS: Maternal clearance of progesterone by hepatic CYP450's is driven primarily by CYP3A4, with limited contributions from CYP3A5 and CYP3A7.Item Identification of amino acid determinants in CYP4B1 for optimal catalytic processing of 4-ipomeanol.(Portland Press, 2015-01-01) Wiek, Constanze; Schmidt, Eva M.; Roellecke, Katharina; Freund, Marcel; Nakano, Mariko; Kelly, Edward J.; Kaisers, Wolfgang; Yarov-Yarovoy, Vladimir; Kramm, Christof M.; Rettie, Allan E.; Hanenberg, Helmut; Department of Pediatrics, IU School of MedicineMammalian CYP4B1 enzymes are cytochrome P450 mono-oxygenases that are responsible for the bioactivation of several exogenous pro-toxins including 4-ipomeanol (4-IPO). In contrast with the orthologous rabbit enzyme, we show here that native human CYP4B1 with a serine residue at position 427 is unable to bioactivate 4-IPO and does not cause cytotoxicity in HepG2 cells and primary human T-cells that overexpress these enzymes. We also demonstrate that a proline residue in the meander region at position 427 in human CYP4B1 and 422 in rabbit CYP4B1 is important for protein stability and rescues the 4-IPO bioactivation of the human enzyme, but is not essential for the catalytic activity of the rabbit CYP4B1 protein. Systematic substitution of native and p.S427P human CYP4B1 with peptide regions from the highly active rabbit enzyme reveals that 18 amino acids in the wild-type rabbit CYP4B1 protein are key for conferring high 4-IPO metabolizing activity. Introduction of 12 of the 18 amino acids that are also present at corresponding positions in other human CYP4 family members into the p.S427P human CYP4B1 protein results in a mutant human enzyme (P+12) that is as stable and as active as the rabbit wild-type CYP4B1 protein. These 12 mutations cluster in the predicted B-C loop through F-helix regions and reveal new amino acid regions important to P450 enzyme stability. Finally, by minimally re-engineering the human CYP4B1 enzyme for efficient activation of 4-IPO, we have developed a novel human suicide gene system that is a candidate for adoptive cellular therapies in humans.Item Progesterone Metabolites Inhibit the Human Ether-a-go-go-Related Gene and Predict QT Interval Length(Wiley, 2020) Shugg, Tyler; Egly, Christian; Stamatkin, Chris W.; Patil, Avinash S.; Tisdale, James E.; Overholser, Brian R.; Medicine, School of MedicineA decrease in the human ether-a-go-go-related gene (hERG/KCNH2)-related channel has been linked to intrauterine fetal death. The formation of cytochrome P450 (CYP) 3A-mediated progesterone metabolites, 6-beta-hydroxy-progesterone (6β-OHP) and 16α-hydroxy-progesterone (16α-OHP), is variable among adults and differs from fetal metabolism. The primary objective of this study was to assess the potential for progesterone metabolites to inhibit hERG-related current and predict QTc intervals. Whole-cell voltage-clamp electrophysiology was performed on human embryonic kidney 293 cells stably expressing hERG exposed to progesterone or metabolites. Both 6β-OHP and 16α-OHP positively shifted the voltage dependence of activation relative to vehicle from −4.0 ± 0.8 to −0.3 ± 0.8 mV, P < .01; and 1.0 ± 0.6 mV, P < .01, respectively. In addition, 6β-OHP decreased maximal outward tail currents from 49.4 ± 4.9 to 32.5 ± 4.1 pA/pF, P < 0.01, and reduced the expression of fully glycosylated hERG by 42%. Healthy female subjects were administered progesterone 400 mg orally for 7 days, ibutilide 0.003 mg/kg was infused, and serial electrocardiograms and blood samples collected. Relationships between rate-corrected QT intervals (QTcI) with circulating hormones and metabolites were assessed. The 6β-OHP and 16α-OHP metabolites were independent predictors of QTcI intervals prior to and following ibutilide administration. In conclusion, the progesterone metabolites formed via CYP3A cause inhibitory effects on hERG channels and predict QTcI intervals in healthy women pretreated with progesterone. Further study into maternal and fetal exposure to these metabolites and potential to prolong cardiac repolarization is warranted.