- Browse by Subject
Browsing by Subject "Cyclophilin D"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Cyclophilin D Regulates Antiviral CD8+ T Cell Survival in a Cell-Extrinsic Manner(AAI, 2020-04) Condotta, Stephanie A.; Downey, Jeffrey; Pardy, Ryan D.; Valbon, Stefanie F.; Tarrab, Esther; Lamarre, Alain; Divangahi, Maziar; Richer, Martin J.; Microbiology and Immunology, School of MedicineCD8+ T cell–mediated immunity is critical for host defense against viruses and requires mitochondria-mediated type I IFN (IFN-I) signaling for optimal protection. Cyclophilin D (CypD) is a mitochondrial matrix protein that modulates the mitochondrial permeability transition pore, but its role in IFN-I signaling and CD8+ T cell responses to viral infection has not been previously explored. In this study, we demonstrate that CypD plays a critical extrinsic role in the survival of Ag-specific CD8+ T cell following acute viral infection with lymphocytic choriomeningitis virus in mice. CypD deficiency resulted in reduced IFN-I and increased CD8+ T cell death, resulting in a reduced antiviral CD8+ T cell response. In addition, CypD deficiency was associated with an increase in pathogen burden at an early time-point following infection. Furthermore, our data demonstrate that transfer of wild-type macrophages (expressing CypD) to CypD-deficient mice can partially restore CD8+ T cell responses. These results establish that CypD plays an extrinsic role in regulating optimal effector CD8+ T cell responses to viral infection. Furthermore, this suggests that, under certain circumstances, inhibition of CypD function may have a detrimental impact on the host’s ability to respond to viral infection.Item Deletion of mitochondrial calcium uniporter incompletely inhibits calcium uptake and induction of the permeability transition pore in brain mitochondria(American Society for Biochemistry and Molecular Biology, 2018-10-05) Hamilton, James; Brustovetsky, Tatiana; Rysted, Jacob E.; Lin, Zhihong; Usachev, Yuriy M.; Brustovetsky, Nickolay; Pharmacology and Toxicology, School of MedicineCa2+ influx into mitochondria is mediated by the mitochondrial calcium uniporter (MCU), whose identity was recently revealed as a 40-kDa protein that along with other proteins forms the mitochondrial Ca2+ uptake machinery. The MCU is a Ca2+-conducting channel spanning the inner mitochondrial membrane. Here, deletion of the MCU completely inhibited Ca2+ uptake in liver, heart, and skeletal muscle mitochondria. However, in brain nonsynaptic and synaptic mitochondria from neuronal somata/glial cells and nerve terminals, respectively, the MCU deletion slowed, but did not completely block, Ca2+ uptake. Under resting conditions, brain MCU-KO mitochondria remained polarized, and in brain MCU-KO mitochondria, the electrophoretic Ca2+ ionophore ETH129 significantly accelerated Ca2+ uptake. The residual Ca2+ uptake in brain MCU-KO mitochondria was insensitive to inhibitors of mitochondrial Na+/Ca2+ exchanger and ryanodine receptor (CGP37157 and dantrolene, respectively), but was blocked by the MCU inhibitor Ru360. Respiration of WT and MCU-KO brain mitochondria was similar except that for mitochondria that oxidized pyruvate and malate, Ca2+ more strongly inhibited respiration in WT than in MCU-KO mitochondria. Of note, the MCU deletion significantly attenuated but did not completely prevent induction of the permeability transition pore (PTP) in brain mitochondria. Expression level of cyclophilin D and ATP content in mitochondria, two factors that modulate PTP induction, were unaffected by MCU-KO, whereas ADP was lower in MCU-KO than in WT brain mitochondria. Our results suggest the presence of an MCU-independent Ca2+ uptake pathway in brain mitochondria that mediates residual Ca2+ influx and induction of PTP in a fraction of the mitochondrial population.Item The effect of mitochondrial calcium uniporter and cyclophilin D knockout on resistance of brain mitochondria to Ca2+-induced damage(Elsevier, 2021) Hamilton, James; Brustovetsky, Tatiana; Brustovetsky, Nickolay; Pharmacology and Toxicology, School of MedicineThe mitochondrial calcium uniporter (MCU) and cyclophilin D (CyD) are key players in induction of the permeability transition pore (PTP), which leads to mitochondrial depolarization and swelling, the major signs of Ca2+-induced mitochondrial damage. Mitochondrial depolarization inhibits ATP production, whereas swelling results in the release of mitochondrial pro-apoptotic proteins. The extent to which simultaneous deletion of MCU and CyD inhibits PTP induction and prevents damage of brain mitochondria is not clear. Here, we investigated the effects of MCU and CyD deletion on the propensity for PTP induction using mitochondria isolated from the brains of MCU-KO, CyD-KO, and newly created MCU/CyD-double knockout (DKO) mice. Neither deletion of MCU nor of CyD affected respiration or membrane potential in mitochondria isolated from the brains of these mice. Mitochondria from MCU-KO and MCU/CyD-DKO mice displayed reduced Ca2+ uptake and diminished extent of PTP induction. The Ca2+ uptake by mitochondria from CyD-KO mice was increased compared with mitochondria from WT mice. Deletion of CyD prevented mitochondrial swelling and resulted in transient depolarization in response to Ca2+, but it did not prevent Ca2+-induced delayed mitochondrial depolarization. Mitochondria from MCU/CyD-DKO mice did not swell in response to Ca2+, but they did exhibit mild sustained depolarization. Dibucaine, an inhibitor of the Ca2+-activated mitochondrial phospholipase A2, attenuated and bovine serum albumin completely eliminated the sustained depolarization. This suggests the involvement of phospholipase A2 and free fatty acids. Thus, in addition to induction of the classical PTP, alternative deleterious mechanisms may contribute to mitochondrial damage following exposure to elevated Ca2+.Item The Role of Adenine Nucleotide Translocase in the Mitochondrial Permeability Transition(MDPI, 2020-12) Brustovetsky, Nickolay; Pharmacology and Toxicology, School of MedicineThe mitochondrial permeability transition, a Ca2+-induced significant increase in permeability of the inner mitochondrial membrane, plays an important role in various pathologies. The mitochondrial permeability transition is caused by induction of the permeability transition pore (PTP). Despite significant effort, the molecular composition of the PTP is not completely clear and remains an area of hot debate. The Ca2+-modified adenine nucleotide translocase (ANT) and F0F1 ATP synthase are the major contenders for the role of pore in the PTP. This paper briefly overviews experimental results focusing on the role of ANT in the mitochondrial permeability transition and proposes that multiple molecular entities might be responsible for the conductance pathway of the PTP. Consequently, the term PTP cannot be applied to a single specific protein such as ANT or a protein complex such as F0F1 ATP synthase, but rather should comprise a variety of potential contributors to increased permeability of the inner mitochondrial membrane.