- Browse by Subject
Browsing by Subject "Cyanobacteria"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Origin and Fate of Odorous Metabolites, 2-Methylisoborneol and Geosmin, in a Eutrophic Reservoir(2019-06) Clercin, Nicolas André; Druschel, Gregory K.; Jacinthe, Pierre-André; Filippelli, Gabriel; Moreno-Madriñán, Max Jacobo; Janga, Sarath ChandraTaste-and-Odor (T&O) occurrences are a worldwide problem and can locally have extensive socio-economic impacts in contaminated waterbodies. Tracing odorous compounds in surface waters or controlling the growth of producing organisms is particularly challenging. These approaches require the understanding of complex interactions between broad climate heterogeneity, large-scale physical processes such basin hydrology, lake/reservoir circulation, responses of aquatic ecosystems and communities. Eagle Creek Reservoir (ECR), a eutrophic water body, located in central Indiana experiences annual odorous outbreaks of variable durations and intensities that can impair its water quality. Two major compounds, 2-methylisoborneol and geosmin, have been identified as the main culprits occurring seasonally when the reservoir receives high discharges and nutrient loads from its main tributaries. Under these conditions, the growth of T&O-producing bacteria tends to take over other phytoplanktic organisms. Discrete samples collected within the water column during severe outbreaks in 2013 revealed that some bacterioplankton members belonging to Actinobacteria (Streptomyces) and Cyanobacteria (Planktothrix) were involved in the generation of T&O compounds. Most of this production occurred in the upper layers of the water column where higher abundances of key enzymes from MIB and geosmin metabolic pathways were detected. Application of a copper-based algaecide to curb the biosynthesis of bacterial metabolites led to geosmin production (linked to Cyanobacteria) being quickly terminated, whereas MIB levels (linked to Actinobacteria) lingered for several weeks after the algaecide treatment. Significant chemical differences in the association of these metabolites were measured in ECR. Geosmin was dominantly found cell-bound and settling after cellular death increases susceptibility to biodegradation in bottom sediments. MIB was mostly found dissolved making it less susceptible to biodegradation in bottom sediments. Genetic data identified Novosphingobium hassiacum and Sphingomonas oligophenolica (α- Proteobacteria) as potential degraders of geosmin and, four Flavobacterium species (Bacteroidetes) as potential MIB degraders. The role of Eagle Creek natural sediments in the removal of bacterial metabolites via chemical adsorption was also tested but was not proven efficient. Bacterial breakdown activity was demonstrated to be the major loss mechanism of MIB and geosmin.Item Taste and Odor Event Dynamics of a Midwestern Freshwater Reservoir(2020-11) Howard, Chase Steven; Druschel, Gregory K.; Jacinthe, Pierre-André; Picard, Christine J.Eagle Creek Reservoir (ECR), located in the Midwestern U.S., is a freshwater limnic system plagued by seasonal Harmful Algal Blooms (HABs) which generate water-fouling Geosmin (GSM) and 2-Methylisoborneol (MIB) Taste and Odor (T&O) compounds. Past investigations of T&O event dynamics have identified Actinomycetes as responsible for MIB production and several genera of cyanobacteria for GSM production. During 2018, a temporally and spatially expansive sampling regimen of the reservoir was carried out and a battery of biological, chemical, physical, and hyperspectral experiments performed. The resulting data was analyzed using time series, cross-correlation, lag time, and multivariate analyses as well as machine learning algorithms to pick apart and interrogate any relationships between HABs, T&O events, and environmental parameters. The results show that local weather and watershed conditions exert significant control over the state of the reservoir and the behavior of the algal community. GSM and MIB peaked during early May under well-mixed, cold, and nutrient-rich water column conditions, then declined under summer thermal stratification before making a small resurgence during late season mixing. Bloom die-off and decay was effectively ruled out as a mechanism controlling T&O concentrations, and no links were found between T&O concentrations and algal biomass. Strong evidence was found that GSM/MIB concentrations were a response by bloom microbes to changing nutrient conditions within the reservoir, and it was determined that nutrient fluxes from the watershed 30-40 days prior to peak T&O concentrations are likely instrumental in the development of the slow- ix growing microbes characteristic of the reservoir. Attempts were made to assess spatial and temporal variability but no significant spatial differences were identified; differences between sampling sites were far smaller than differences between different sampling dates. The findings here add to the growing body of literature showing T&O and HAB dynamics are more closely linked to the relative abundance and speciation of nutrients than other parameters. Additionally, these findings carry important implications for the management of ECR and other similar freshwater reservoirs while highlighting the importance of reducing watershed eutrophication.