- Browse by Subject
Browsing by Subject "Cryoelectron microscopy"
Now showing 1 - 6 of 6
Results Per Page
Sort Options
Item Age-dependent formation of TMEM106B amyloid filaments in human brains(Springer Nature, 2022) Schweighauser, Manuel; Arseni, Diana; Bacioglu, Mehtap; Huang, Melissa; Lövestam, Sofia; Shi, Yang; Yang, Yang; Zhang, Wenjuan; Kotecha, Abhay; Garringer, Holly J.; Vidal, Ruben; Hallinan, Grace I.; Newell, Kathy L.; Tarutani, Airi; Murayama, Shigeo; Miyazaki, Masayuki; Saito, Yuko; Yoshida, Mari; Hasegawa, Kazuko; Lashley, Tammaryn; Revesz, Tamas; Kovacs, Gabor G.; van Swieten, John; Takao, Masaki; Hasegawa, Masato; Ghetti, Bernardino; Spillantini, Maria Grazia; Ryskeldi-Falcon, Benjamin; Murzin, Alexey G.; Goedert, Michel; Scheres, Sjors H.W.; Pathology and Laboratory Medicine, School of MedicineMany age-dependent neurodegenerative diseases, such as Alzheimer's and Parkinson's, are characterized by abundant inclusions of amyloid filaments. Filamentous inclusions of the proteins tau, amyloid-β, α-synuclein and transactive response DNA-binding protein (TARDBP; also known as TDP-43) are the most common1,2. Here we used structure determination by cryogenic electron microscopy to show that residues 120-254 of the lysosomal type II transmembrane protein 106B (TMEM106B) also form amyloid filaments in human brains. We determined the structures of TMEM106B filaments from a number of brain regions of 22 individuals with abundant amyloid deposits, including those resulting from sporadic and inherited tauopathies, amyloid-β amyloidoses, synucleinopathies and TDP-43 proteinopathies, as well as from the frontal cortex of 3 individuals with normal neurology and no or only a few amyloid deposits. We observed three TMEM106B folds, with no clear relationships between folds and diseases. TMEM106B filaments correlated with the presence of a 29-kDa sarkosyl-insoluble fragment and globular cytoplasmic inclusions, as detected by an antibody specific to the carboxy-terminal region of TMEM106B. The identification of TMEM106B filaments in the brains of older, but not younger, individuals with normal neurology indicates that they form in an age-dependent manner.Item Cryo-EM structures of amyloid-β 42 filaments from human brains(American Association for the Advancement of Science, 2022) Yang, Yang; Arseni, Diana; Zhang, Wenjuan; Huang, Melissa; Lövestam, Sofia; Schweighauser, Manuel; Kotecha, Abhay; Murzin, Alexey G.; Peak-Chew, Sew Y.; Macdonald, Jennifer; Lavenir, Isabelle; Garringer, Holly J.; Gelpi, Ellen; Newell, Kathy L.; Kovacs, Gabor G.; Vidal, Ruben; Ghetti, Bernardino; Falcon, Benjamin; Scheres, Sjors H.W.; Goedert, Michel; Pathology and Laboratory Medicine, School of MedicineFilament assembly of amyloid-β peptides ending at residue 42 (Aβ42) is a central event in Alzheimer’s disease. Here, we report the cryo–electron microscopy (cryo-EM) structures of Aβ42 filaments from human brains. Two structurally related S-shaped protofilament folds give rise to two types of filaments. Type I filaments were found mostly in the brains of individuals with sporadic Alzheimer’s disease, and type II filaments were found in individuals with familial Alzheimer’s disease and other conditions. The structures of Aβ42 filaments from the brain differ from those of filaments assembled in vitro. By contrast, in AppNL-F knock-in mice, Aβ42 deposits were made of type II filaments. Knowledge of Aβ42 filament structures from human brains may lead to the development of inhibitors of assembly and improved imaging agents.Item Cryo-EM structures of amyloid-β and tau filaments in Down syndrome(Springer Nature, 2024) Fernandez, Anllely; Hoq, Md Rejaul; Hallinan, Grace I.; Li, Daoyi; Bharath, Sakshibeedu R.; Vago, Frank S.; Zhang, Xiaoqi; Ozcan, Kadir A.; Newell, Kathy L.; Garringer, Holly J.; Jiang, Wen; Ghetti, Bernardino; Vidal, Ruben; Pathology and Laboratory Medicine, School of MedicineAdult individuals with Down syndrome (DS) develop Alzheimer disease (AD). Whether there is a difference between AD in DS and AD regarding the structure of amyloid-β (Aβ) and tau filaments is unknown. Here we report the structure of Aβ and tau filaments from two DS brains. We found two Aβ40 filaments (types IIIa and IIIb) that differ from those previously reported in sporadic AD and two types of Aβ42 filaments (I and II) identical to those found in sporadic and familial AD. Tau filaments (paired helical filaments and straight filaments) were identical to those in AD, supporting the notion of a common mechanism through which amyloids trigger aggregation of tau. This knowledge is important for understanding AD in DS and assessing whether adults with DS could be included in AD clinical trials.Item Cryo-EM structures of tau filaments from Alzheimer's disease(Springer Nature, 2017-07-13) Fitzpatrick, Anthony W.P.; Falcon, Benjamin; He, Shaoda; Murzin, Alexey G.; Murshudov, Garib; Garringer, Holly J.; Crowther, R. Anthony; Ghetti, Bernardino; Goedert, Michel; Scheres, Sjors H.W.; Pathology and Laboratory Medicine, School of MedicineAlzheimer's disease is the most common neurodegenerative disease, and there are no mechanism-based therapies. The disease is defined by the presence of abundant neurofibrillary lesions and neuritic plaques in the cerebral cortex. Neurofibrillary lesions comprise paired helical and straight tau filaments, whereas tau filaments with different morphologies characterize other neurodegenerative diseases. No high-resolution structures of tau filaments are available. Here we present cryo-electron microscopy (cryo-EM) maps at 3.4-3.5 Å resolution and corresponding atomic models of paired helical and straight filaments from the brain of an individual with Alzheimer's disease. Filament cores are made of two identical protofilaments comprising residues 306-378 of tau protein, which adopt a combined cross-β/β-helix structure and define the seed for tau aggregation. Paired helical and straight filaments differ in their inter-protofilament packing, showing that they are ultrastructural polymorphs. These findings demonstrate that cryo-EM allows atomic characterization of amyloid filaments from patient-derived material, and pave the way for investigation of a range of neurodegenerative diseases.Item Structural polymorphism of amyloid fibrils in ATTR amyloidosis revealed by cryo-electron microscopy(Springer Nature, 2024-01-17) Nguyen, Binh An; Singh, Virender; Afrin, Shumaila; Yakubovska, Anna; Wang, Lanie; Ahmed, Yasmin; Pedretti, Rose; Fernandez-Ramirez, Maria del Carmen; Singh, Preeti; Pękała, Maja; Cabrera Hernandez, Luis O.; Kumar, Siddharth; Lemoff, Andrew; Gonzalez-Prieto, Roman; Sawaya, Michael R.; Eisenberg, David S.; Benson, Merrill Douglas; Saelices, Lorena; Pathology and Laboratory Medicine, School of MedicineATTR amyloidosis is caused by the deposition of transthyretin in the form of amyloid fibrils in virtually every organ of the body, including the heart. This systemic deposition leads to a phenotypic variability that has not been molecularly explained yet. In brain amyloid conditions, previous studies suggest an association between clinical phenotype and the molecular structures of their amyloid fibrils. Here we investigate whether there is such an association in ATTRv amyloidosis patients carrying the mutation I84S. Using cryo-electron microscopy, we determined the structures of cardiac fibrils extracted from three ATTR amyloidosis patients carrying the ATTRv-I84S mutation, associated with a consistent clinical phenotype. We found that in each ATTRv-I84S patient, the cardiac fibrils exhibited different local conformations, and these variations can co-exist within the same fibril. Our finding suggests that one amyloid disease may associate with multiple fibril structures in systemic amyloidoses, calling for further studies.Item Structure-based Classification of Tauopathies(Springer Nature, 2021) Shi, Yang; Zhang, Wenjuan; Yang, Yang; Murzin, Alexey G.; Falcon, Benjamin; Kotecha, Abhay; van Beers, Mike; Tarutani, Airi; Kametani, Fuyuki; Garringer, Holly J.; Vidal, Ruben; Hallinan, Grace I.; Lashley, Tammaryn; Saito, Yuko; Murayama, Shigeo; Yoshida, Mari; Tanaka, Hidetomo; Kakita, Akiyoshi; Ikeuchi, Takeshi; Robinson, Andrew C.; Mann, David M.A.; Kovacs, Gabor G.; Revesz, Tamas; Ghetti, Bernardino; Hasegawa, Masato; Goedert, Michel; Scheres, Sjors H.W.; Pathology and Laboratory Medicine, School of MedicineThe ordered assembly of tau protein into filaments characterizes several neurodegenerative diseases, which are called tauopathies. It was previously reported that, by cryo-electron microscopy, the structures of tau filaments from Alzheimer's disease1,2, Pick's disease3, chronic traumatic encephalopathy4 and corticobasal degeneration5 are distinct. Here we show that the structures of tau filaments from progressive supranuclear palsy (PSP) define a new three-layered fold. Moreover, the structures of tau filaments from globular glial tauopathy are similar to those from PSP. The tau filament fold of argyrophilic grain disease (AGD) differs, instead resembling the four-layered fold of corticobasal degeneration. The AGD fold is also observed in ageing-related tau astrogliopathy. Tau protofilament structures from inherited cases of mutations at positions +3 or +16 in intron 10 of MAPT (the microtubule-associated protein tau gene) are also identical to those from AGD, suggesting that relative overproduction of four-repeat tau can give rise to the AGD fold. Finally, the structures of tau filaments from cases of familial British dementia and familial Danish dementia are the same as those from cases of Alzheimer's disease and primary age-related tauopathy. These findings suggest a hierarchical classification of tauopathies on the basis of their filament folds, which complements clinical diagnosis and neuropathology and also allows the identification of new entities-as we show for a case diagnosed as PSP, but with filament structures that are intermediate between those of globular glial tauopathy and PSP.