- Browse by Subject
Browsing by Subject "Craniofacial"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Decoding the Human Face: Progress and Challenges in Understanding the Genetics of Craniofacial Morp(Annual Reviews, 2022) Naqvi, Sahin; Hoskens, Hanne; Wilke, Franziska; Weinberg, Seth M.; Shaffer, John R.; Walsh, Susan; Shriver, Mark D.; Wysocka, Joanna; Claes, Peter; Biology, School of ScienceVariations in the form of the human face, which plays a role in our individual identities and societal interactions, have fascinated scientists and artists alike. Here, we review our current understanding of the genetics underlying variation in craniofacial morphology and disease-associated dysmorphology, synthesizing decades of progress on Mendelian syndromes in addition to more recent results from genome-wide association studies of human facial shape and disease risk. We also discuss the various approaches used to phenotype and quantify facial shape, which are of particular importance due to the complex, multipartite nature of the craniofacial form. We close by discussing how experimental studies have contributed and will further contribute to our understanding of human genetic variation and then proposing future directions and applications for the field.Item Generation of mice carrying a knockout-first and conditional-ready allele of transforming growth factor beta2 gene(Wiley, 2014-09) Ahmed, A. S. Ishtiaq; Bose, Gracelyn C.; Huang, Li; Azhar, Mohamad; Department of Pediatrics, Indiana University School of MedicineTransforming growth factor beta2 (TGFβ2) is a multifunctional protein which is expressed in several embryonic and adult organs. TGFB2 mutations can cause Loeys Dietz syndrome, and its dysregulation is involved in cardiovascular, skeletal, ocular, and neuromuscular diseases, osteoarthritis, tissue fibrosis, and various forms of cancer. TGFβ2 is involved in cell growth, apoptosis, cell migration, cell differentiation, cell-matrix remodeling, epithelial-mesenchymal transition, and wound healing in a highly context-dependent and tissue-specific manner. Tgfb2(-/-) mice die perinatally from congenital heart disease, precluding functional studies in adults. Here, we have generated mice harboring Tgfb2(βgeo) (knockout-first lacZ-tagged insertion) gene-trap allele and Tgfb2(flox) conditional allele. Tgfb2(βgeo/βgeo) or Tgfb2(βgeo/-) mice died at perinatal stage from the same congenital heart defects as Tgfb2(-/-) mice. β-galactosidase staining successfully detected Tgfb2 expression in the heterozygous Tgfb2(βgeo) fetal tissue sections. Tgfb2(flox) mice were produced by crossing the Tgfb2(+/βgeo) mice with the FLPeR mice. Tgfb2(flox/-) mice were viable. Tgfb2 conditional knockout (Tgfb2(cko/-) ) fetuses were generated by crossing of Tgfb2(flox/-) mice with Tgfb2(+/-) ; EIIaCre mice. Systemic Tgfb2(cko/-) embryos developed cardiac defects which resembled the Tgfb2(βgeo/βgeo) , Tgfb2(βgeo/-) , and Tgfb2(-/-) fetuses. In conclusion, Tgfb2(βgeo) and Tgfb2(flox) mice are novel mouse strains which will be useful for investigating the tissue specific expression and function of TGFβ2 in embryonic development, adult organs, and disease pathogenesis and cancer. genesisItem Orbital Exenteration for Craniofacial Lesions: A Systematic Review and Meta-Analysis of Patient Characteristics and Survival Outcomes(MDPI, 2023-08-27) Qedair, Jumanah; Haider, Ali S.; Balasubramanian, Kishore; Palmisciano, Paolo; Hassan, Taimur; Shahbandi, Ataollah; Sabahi, Mohammadmahdi; Kharbat, Abdurrahman F.; Abou-Al-Shaar, Hussam; Yu, Kenny; Cohen-Gadol, Aaron A.; El Ahmadieh, Tarek Y.; Bin-Alamer, Othman; Neurological Surgery, School of MedicineBackground: The outcomes of orbital exenteration (OE) in patients with craniofacial lesions (CFLs) remain unclear. The present review summarizes the available literature on the clinical outcomes of OE, including surgical outcomes and overall survival (OS). Methods: Relevant articles were retrieved from Medline, Scopus, and Cochrane according to PRISMA guidelines. A systematic review and meta-analysis were conducted on the clinical characteristics, management, and outcomes. Results: A total of 33 articles containing 957 patients who underwent OE for CFLs were included (weighted mean age: 64.3 years [95% CI: 59.9-68.7]; 58.3% were male). The most common lesion was squamous cell carcinoma (31.8%), and the most common symptom was disturbed vision/reduced visual acuity (22.5%). Of the patients, 302 (31.6%) had total OE, 248 (26.0%) had extended OE, and 87 (9.0%) had subtotal OE. Free flaps (33.3%), endosseous implants (22.8%), and split-thickness skin grafts (17.2%) were the most used reconstructive methods. Sino-orbital or sino-nasal fistula (22.6%), flap or graft failure (16.9%), and hyperostosis (13%) were the most reported complications. Regarding tumor recurrences, 38.6% were local, 32.3% were distant, and 6.7% were regional. The perineural invasion rate was 17.4%, while the lymphovascular invasion rate was 5.0%. Over a weighted mean follow-up period of 23.6 months (95% CI: 13.8-33.4), a weighted overall mortality rate of 39% (95% CI: 28-50%) was observed. The 5-year OS rate was 50% (median: 61 months [95% CI: 46-83]). The OS multivariable analysis did not show any significant findings. Conclusions: Although OE is a disfiguring procedure with devastating outcomes, it is a viable option for carefully selected patients with advanced CFLs. A patient-tailored approach based on tumor pathology, extension, and overall patient condition is warranted.Item Treatment and genetic analysis of craniofacial deficits associated with down syndrome(2014-12-12) Tumbleson, Danika M.; Roper, Randall J.; Belecky-Adams, Teri; Yost, Robert; Picard, RobertDown syndrome (DS) is caused by trisomy of human chromosome 21 (Hsa21) and occurs in ~1 of every 700 live births. Individuals with DS present craniofacial abnormalities, specifically an undersized, dysmorphic mandible which may lead to difficulty with eating, breathing, and speech. Using the Ts65Dn DS mouse model, which mirrors these phenotypes and contains three copies of ~50% Hsa21 homologues, our lab has traced the mandibular deficit to a neural crest cell (NCC) deficiency in the first pharyngeal arch (PA1 or mandibular precursor) at embryonic day 9.5 (E9.5). At E9.5, the PA1 is reduced in size and contains fewer cells due to fewer NCC populating the PA1 from the neural tube (NT) as well as reduced cellular proliferation in the PA1. We hypothesize that both the deficits in NCC migration and proliferation may cause the reduction in size of the PA1. To identify potential genetic mechanisms responsible for trisomic PA1 deficits, we generated RNA-sequence (RNA-seq) data from euploid and trisomic E9.25 NT and E9.5 PA1 (time points occurring before and after observed deficits) using a next-generation sequencing platform. Analysis of RNA-seq data revealed differential trisomic expression of 53 genes from E9.25 NT and 364 genes from E9.5 PA1, five of which are present in three copies in Ts65Dn. We also further analyzed the data to find that fewer alternative splicing events occur in trisomic tissues compared to euploid tissues and in PA1 tissue compared to NT tissue. In a subsequent study, to test gene-specific treatments to rescue PA1 deficits, we targeted Dyrk1A, an overexpressed DS candidate gene implicated in many DS phenotypes and predicted to cause the NCC and PA1 deficiencies. We hypothesize that treatment of pregnant Ts65Dn mothers with Epigallocatechin gallate (EGCG), a known Dyrk1A inhibitor, will correct NCC deficits and rescue the undersized PA1 in trisomic E9.5 embryos. To test our hypothesis, we treated pregnant Ts65Dn mothers with EGCG from either gestational day 7 (G7) to G8 or G0 to G9.5. Our study found an increase in PA1 volume and NCC number in trisomic E9.5 embryos after treatment on G7 and G8, but observed no significant improvements in NCC deficits following G0-G9.5 treatment. We also observed a developmental delay of embryos from trisomic mothers treated with EGCG from G0-G9.5. Together, these data show that timing and sufficient dosage of EGCG treatment is most effective during the developmental window the few days before NCC deficits arise, during G7 and G8, and may be ineffective or harmful when administered at earlier developmental time points. Together, the findings of both studies offer a better understanding of potential mechanisms altered by trisomy as well as preclinical evidence for EGCG as a potential prenatal therapy for craniofacial disorders linked to DS.