- Browse by Subject
Browsing by Subject "Cox proportional hazard model"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Association Between Tobacco Related Diagnoses and Alzheimer Disease: A Population Study(2022-05) Almalki, Amwaj Ghazi; Zhang, Pengyue; Johnson, Travis; Fadel, WilliamBackground: Tobacco use is associated with an increased risk of developing Alzheimer's disease (AD). 14% of the incidence of AD is associated with various types of tobacco exposure. Additional real-world evidence is warranted to reveal the association between tobacco use and AD in age/gender-specific subpopulations. Method: In this thesis, the relationships between diagnoses related to tobacco use and diagnoses of AD in gender- and age-specific subgroups were investigated, using health information exchange data. The non-parametric Kaplan-Meier method was used to estimate the incidence of AD. Furthermore, the log-rank test was used to compare incidence between individuals with and without tobacco related diagnoses. In addition, we used semi-parametric Cox models to examine the association between tobacco related diagnoses and diagnoses of AD, while adjusting covariates. Results: Tobacco related diagnosis was associated with increased risk of developing AD comparing to no tobacco related diagnosis among individuals aged 60-74 years (female hazard ratio [HR] =1.26, 95% confidence interval [CI]: 1.07 – 1.48, p-value = 0.005; and male HR =1.33, 95% CI: 1.10 - 1.62, p-value =0.004). Tobacco related diagnosis was associated with decreased risk of developing AD comparing to no tobacco related diagnosis among individuals aged 75-100 years (female HR =0.79, 95% CI: 0.70 - 0.89, p-value =0.001; and male HR =0.90, 95% CI: 0.82 - 0.99, p-value =0.023). Conclusion: Individuals with tobacco related diagnoses were associated with an increased risk of developing AD in older adults aged 60-75 years. Among older adults aged 75-100 years, individuals with tobacco related diagnoses were associated with a decreased risk of developing AD.Item Temporal Event Modeling of Social Harm with High Dimensional and Latent Covariates(2022-08) Liu, Xueying; Mohler, George; Fang, Shiaofen; Wang, Honglang; Hasan, Mohammad A.The counting process is the fundamental of many real-world problems with event data. Poisson process, used as the background intensity of Hawkes process, is the most commonly used point process. The Hawkes process, a self-exciting point process fits to temporal event data, spatial-temporal event data, and event data with covariates. We study the Hawkes process that fits to heterogeneous drug overdose data via a novel semi-parametric approach. The counting process is also related to survival data based on the fact that they both study the occurrences of events over time. We fit a Cox model to temporal event data with a large corpus that is processed into high dimensional covariates. We study the significant features that influence the intensity of events.