- Browse by Subject
Browsing by Subject "Covariance regression"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Beyond Massive Univariate Tests: Covariance Regression Reveals Complex Patterns of Functional Connectivity Related to Attention-Deficit/Hyperactivity Disorder, Age, Sex, and Response Control(Elsevier, 2022) Zhao, Yi; Nebel, Mary Beth; Caffo, Brian S.; Mostofsky, Stewart H.; Rosch, Keri S.; Biostatistics and Health Data Science, School of MedicineBackground: Studies of brain functional connectivity (FC) typically involve massive univariate tests, performing statistical analysis on each individual connection. In this study we apply a novel whole-matrix regression approach referred to as Covariate Assisted Principal (CAP) regression to identify resting-state FC brain networks associated with attention-deficit/hyperactivity disorder (ADHD) and response control. Methods: Participants included 8-12 year-old children with ADHD (n=115, 29 girls) and typically developing controls (n=102, 35 girls) who completed a resting-state fMRI scan and a go/no-go task (GNG). We modeled three sets of covariates to identify resting-state networks associated with an ADHD diagnosis, sex, and response inhibition (commission errors) and variability (ex-Gaussian parameter tau). Results: The first network includes FC between striatal-cognitive control (CC) network subregions and thalamic-default mode network (DMN) subregions and is positively related to age. The second consists of FC between CC-visual-somatomotor regions and between CC-DMN subregions and is positively associated with response variability in boys with ADHD. The third consists of FC within the DMN and between DMN-CC-visual regions and differs between boys with and without ADHD. The fourth consists of FC between visual-somatomotor regions and between visual-DMN regions and differs between girls and boys with ADHD and is associated with response inhibition and variability in boys with ADHD. Unique networks were also identified in each of the three models suggesting some specificity to the covariates of interest. Conclusions: These findings demonstrate the utility of our novel covariance regression approach to studying functional brain networks relevant for development, behavior, and psychopathology.Item Longitudinal regression of covariance matrix outcomes(Oxford, 2022-12-01) Zhao, Yi; Caffo, Brian S.; Luo, Xi; Alzheimer’s Disease Neuroimaging Initiative; Biostatistics and Health Data Science, School of MedicineIn this study, a longitudinal regression model for covariance matrix outcomes is introduced. The proposal considers a multilevel generalized linear model for regressing covariance matrices on (time-varying) predictors. This model simultaneously identifies covariate-associated components from covariance matrices, estimates regression coefficients, and captures the within-subject variation in the covariance matrices. Optimal estimators are proposed for both low-dimensional and high-dimensional cases by maximizing the (approximated) hierarchical-likelihood function. These estimators are proved to be asymptotically consistent, where the proposed covariance matrix estimator is the most efficient under the low-dimensional case and achieves the uniformly minimum quadratic loss among all linear combinations of the identity matrix and the sample covariance matrix under the high-dimensional case. Through extensive simulation studies, the proposed approach achieves good performance in identifying the covariate-related components and estimating the model parameters. Applying to a longitudinal resting-state functional magnetic resonance imaging data set from the Alzheimer’s Disease (AD) Neuroimaging Initiative, the proposed approach identifies brain networks that demonstrate the difference between males and females at different disease stages. The findings are in line with existing knowledge of AD and the method improves the statistical power over the analysis of cross-sectional data.Item Regression models for partially localized fMRI connectivity analyses(Frontiers Media, 2023-11-13) Smith, Bonnie B.; Zhao, Yi; Lindquist, Martin A.; Caffo, Brian; Biostatistics and Health Data Science, Richard M. Fairbanks School of Public HealthBackground: Brain functional connectivity analysis of resting-state functional magnetic resonance imaging (fMRI) data is typically performed in a standardized template space assuming consistency of connections across subjects. Analysis methods can come in the form of one-edge-at-a-time analyses or dimension reduction/decomposition methods. Common to these approaches is an assumption that brain regions are functionally aligned across subjects; however, it is known that this functional alignment assumption is often violated. Methods: In this paper, we use subject-level regression models to explain intra-subject variability in connectivity. Covariates can include factors such as geographic distance between two pairs of brain regions, whether the two regions are symmetrically opposite (homotopic), and whether the two regions are members of the same functional network. Additionally, a covariate for each brain region can be included, to account for the possibility that some regions have consistently higher or lower connectivity. This style of analysis allows us to characterize the fraction of variation explained by each type of covariate. Additionally, comparisons across subjects can then be made using the fitted connectivity regression models, offering a more parsimonious alternative to edge-at-a-time approaches. Results: We apply our approach to Human Connectome Project data on 268 regions of interest (ROIs), grouped into eight functional networks. We find that a high proportion of variation is explained by region covariates and network membership covariates, while geographic distance and homotopy have high relative importance after adjusting for the number of predictors. We also find that the degree of data repeatability using our connectivity regression model-which uses only partial location information about pairs of ROI's-is comparably as high as the repeatability obtained using full location information. Discussion: While our analysis uses data that have been transformed into a common template-space, we also envision the method being useful in multi-atlas registration settings, where subject data remains in its own geometry and templates are warped instead. These results suggest the tantalizing possibility that fMRI connectivity analysis can be performed in subject-space, using less aggressive registration, such as simple affine transformations, multi-atlas subject-space registration, or perhaps even no registration whatsoever.