ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Corticosterone"

Now showing 1 - 5 of 5
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Acute Effects of Hypothermia and Inhalant Anesthesia on Ultrasonic Vocalizations and Neuroendocrine Markers in Neonatal Rats
    (American Association for Laboratory Animal Science, 2024) Lamont, Katherine A.; Boynton, Marcella H.; Hickman, Debra L.; Fletcher, Craig A.; Williams, Morika D.; Laboratory Animal Resource Center, School of Medicine
    Neonatal rodents undergo anesthesia for numerous procedures and for euthanasia by anesthetic overdose. However, data regarding whether neonatal anesthesia is humane are limited. Hypothermia (cryoanesthesia) is the most commonly used anesthetic protocol for neonatal rats 10 d of age or younger. However, hypothermia has recently been restricted in several countries due to perceived painful effects, including pain on rewarming. Minimizing the potential pain and distress of neonates in research is imperative, although very challenging. Traditional validated and nonvalidated behavioral and physiologic outcome measures used for adult rats undergoing anesthesia are unsuitable for evaluating neonates. Therefore, we investigated the effects of several anesthetic methods on neonatal rats by using the innovative objective approaches of noninvasive ultrasonic vocalizations and more invasive neuroendocrine responses (i. e., serum corticosterone, norepinephrine, glucose). Our results show that hypothermia leads to heightened acute distress in neonatal rats as indicated by prolonged recovery times, increased duration of vocalizations, and elevated corticosterone levels, as compared with neonates undergoing inhalational anesthesia. We demonstrate that inhalational anesthesia is preferable to cryoanesthesia for neonatal rats, and researchers using hypothermia anesthesia should consider using inhalational anesthesia as an alternative method.
  • Loading...
    Thumbnail Image
    Item
    The effect of age on hormonal-regulation of lipolysis in isolated adipocytes of the rat
    (1972) Miller, Elizabeth Anne
  • Loading...
    Thumbnail Image
    Item
    Evaluation of Carbon Dioxide Euthanasia of Female Sprague Dawley Rats Alone or With Unfamiliar Conspecifics
    (American Association for Laboratory Animal Science, 2022) Hickman, Debra L.; Cellular and Integrative Physiology, School of Medicine
    Most studies evaluating methods of euthanasia to date have focused on the euthanasia of individual animals. However, larger chambers are commonly used to euthanize multiple cages of animals at once. This study evaluated the use of a commercially available system for euthanasia of 1, 2, or 4 cages containing an individual female Sprague-Dawley rat using volume per minute displacement rates (VDR/min) of either 25% or 50% of 100% carbon dioxide. Animal wellbeing was assessed based on physiologic changes (serum noradrenaline and corticosterone) and behavioral assessments (relative frequency of rearing, line crossing, and grooming). The 25% VDR/min was associated with a significantly longer time to loss of consciousness, but this was not associated with significant physiologic or behavioral changes. The 50% VDR/min treatment group was associated with significant increases in the relative frequency of movement from 1 side of the cage to the other. Increases in the relative frequency of rears were detected in the 25% VDR/min treatment group when 2 or 4 rats were in the chamber as compared with a single rat in the chamber. The absence of significant physiologic changes suggest that the behavioral changes may have been associated with the novelty of the euthanasia experience rather than with distress. The location of the cage within the chamber did not significantly affect any of the measured parameters at either 25% or 50% VDR/min. These data suggest that groups of rats euthanized in these chambers are not experiencing decreases in their welfare.
  • Loading...
    Thumbnail Image
    Item
    Microbiota regulate social behaviour via stress response neurons in the brain
    (Springer Nature, 2021) Wu, Wei-Li; Adame, Mark D.; Liou, Chia-Wei; Barlow, Jacob T.; Lai, Tzu-Ting; Sharon, Gil; Schretter, Catherine E.; Needham, Brittany D.; Wang, Madelyn I.; Tang, Weiyi; Ousey, James; Lin, Yuan-Yuan; Yao, Tzu-Hsuan; Abdel-Haq, Reem; Beadle, Keith; Gradinaru, Viviana; Ismagilov, Rustem F.; Mazmanian, Sarkis K.; Anatomy, Cell Biology and Physiology, School of Medicine
    Social interactions among animals mediate essential behaviours, including mating, nurturing, and defence1,2. The gut microbiota contribute to social activity in mice3,4, but the gut-brain connections that regulate this complex behaviour and its underlying neural basis are unclear5,6. Here we show that the microbiome modulates neuronal activity in specific brain regions of male mice to regulate canonical stress responses and social behaviours. Social deviation in germ-free and antibiotic-treated mice is associated with elevated levels of the stress hormone corticosterone, which is primarily produced by activation of the hypothalamus-pituitary-adrenal (HPA) axis. Adrenalectomy, antagonism of glucocorticoid receptors, or pharmacological inhibition of corticosterone synthesis effectively corrects social deficits following microbiome depletion. Genetic ablation of glucocorticoid receptors in specific brain regions or chemogenetic inactivation of neurons in the paraventricular nucleus of the hypothalamus that produce corticotrophin-releasing hormone (CRH) reverse social impairments in antibiotic-treated mice. Conversely, specific activation of CRH-expressing neurons in the paraventricular nucleus induces social deficits in mice with a normal microbiome. Via microbiome profiling and in vivo selection, we identify a bacterial species, Enterococcus faecalis, that promotes social activity and reduces corticosterone levels in mice following social stress. These studies suggest that specific gut bacteria can restrain the activation of the HPA axis, and show that the microbiome can affect social behaviours through discrete neuronal circuits that mediate stress responses in the brain.
  • Loading...
    Thumbnail Image
    Item
    Sex Differences in Risk and Resilience: Stress Effects on the Neural Substrates of Emotion and Motivation
    (Society for Neuroscience, 2018-10-31) Wellman, Cara L.; Bangasser, Debra A.; Bollinger, Justin L.; Coutellier, Laurence; Logrip, Marian L.; Moench, Kelly M.; Urban, Kimberly R.; Psychology, School of Science
    Risk for stress-sensitive psychopathologies differs in men and women, yet little is known about sex-dependent effects of stress on cellular structure and function in corticolimbic regions implicated in these disorders. Determining how stress influences these regions in males and females will deepen our understanding of the mechanisms underlying sex-biased psychopathology. Here, we discuss sex differences in CRF regulation of arousal and cognition, glucocorticoid modulation of amygdalar physiology and alcohol consumption, the age-dependent impact of social stress on prefrontal pyramidal cell excitability, stress effects on the prefrontal parvalbumin system in relation to emotional behaviors, contributions of stress and gonadal hormones to stress effects on prefrontal glia, and alterations in corticolimbic structure and function after cessation of chronic stress. These studies demonstrate that, while sex differences in stress effects may be nuanced, nonuniform, and nonlinear, investigations of these differences are nonetheless critical for developing effective, sex-specific treatments for psychological disorders.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University