- Browse by Subject
Browsing by Subject "Corticobasal degeneration"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Clinicopathological correlations in behavioural variant frontotemporal dementia(Oxford University Press, 2017-12-01) Perry, David C.; Brown, Jesse A.; Possin, Katherine L.; Datta, Samir; Trujillo, Andrew; Radke, Anneliese; Karydas, Anna; Kornak, John; Sias, Ana C.; Rabinovici, Gil D.; Gorno-Tempini, Maria Luisa; Boxer, Adam L.; May, Mary De; Rankin, Katherine P.; Sturm, Virginia E.; Lee, Suzee E.; Matthews, Brandy R.; Kao, Aimee W.; Vossel, Keith A.; Tartaglia, Maria Carmela; Miller, Zachary A.; Seo, Sang Won; Sidhu, Manu; Gaus, Stephanie E.; Nana, Alissa L.; Vargas, Jose Norberto S.; Hwang, Ji-Hye L.; Ossenkoppele, Rik; Brown, Alainna B.; Huang, Eric J.; Coppola, Giovanni; Rosen, Howard J.; Geschwind, Daniel; Trojanowski, John Q.; Grinberg, Lea T.; Kramer, Joel H.; Miller, Bruce L.; Seely, William W.; Neurology, School of MedicineAccurately predicting the underlying neuropathological diagnosis in patients with behavioural variant frontotemporal dementia (bvFTD) poses a daunting challenge for clinicians but will be critical for the success of disease-modifying therapies. We sought to improve pathological prediction by exploring clinicopathological correlations in a large bvFTD cohort. Among 438 patients in whom bvFTD was either the top or an alternative possible clinical diagnosis, 117 had available autopsy data, including 98 with a primary pathological diagnosis of frontotemporal lobar degeneration (FTLD), 15 with Alzheimer's disease, and four with amyotrophic lateral sclerosis who lacked neurodegenerative disease-related pathology outside of the motor system. Patients with FTLD were distributed between FTLD-tau (34 patients: 10 corticobasal degeneration, nine progressive supranuclear palsy, eight Pick's disease, three frontotemporal dementia with parkinsonism associated with chromosome 17, three unclassifiable tauopathy, and one argyrophilic grain disease); FTLD-TDP (55 patients: nine type A including one with motor neuron disease, 27 type B including 21 with motor neuron disease, eight type C with right temporal lobe presentations, and 11 unclassifiable including eight with motor neuron disease), FTLD-FUS (eight patients), and one patient with FTLD-ubiquitin proteasome system positive inclusions (FTLD-UPS) that stained negatively for tau, TDP-43, and FUS. Alzheimer's disease was uncommon (6%) among patients whose only top diagnosis during follow-up was bvFTD. Seventy-nine per cent of FTLD-tau, 86% of FTLD-TDP, and 88% of FTLD-FUS met at least 'possible' bvFTD diagnostic criteria at first presentation. The frequency of the six core bvFTD diagnostic features was similar in FTLD-tau and FTLD-TDP, suggesting that these features alone cannot be used to separate patients by major molecular class. Voxel-based morphometry revealed that nearly all pathological subgroups and even individual patients share atrophy in anterior cingulate, frontoinsula, striatum, and amygdala, indicating that degeneration of these regions is intimately linked to the behavioural syndrome produced by these diverse aetiologies. In addition to these unifying features, symptom profiles also differed among pathological subtypes, suggesting distinct anatomical vulnerabilities and informing a clinician's prediction of pathological diagnosis. Data-driven classification into one of the 10 most common pathological diagnoses was most accurate (up to 60.2%) when using a combination of known predictive factors (genetic mutations, motor features, or striking atrophy patterns) and the results of a discriminant function analysis that incorporated clinical, neuroimaging, and neuropsychological data.Item Evaluation of Plasma Phosphorylated Tau217 for Differentiation Between Alzheimer Disease and Frontotemporal Lobar Degeneration Subtypes Among Patients With Corticobasal Syndrome(American Medical Association, 2023) VandeVrede, Lawren; La Joie, Renaud; Thijssen, Elisabeth H.; Asken, Breton M.; Vento, Stephanie A.; Tsuei, Torie; Baker, Suzanne L.; Cobigo, Yann; Fonseca, Corrina; Heuer, Hilary W.; Kramer, Joel H.; Ljubenkov, Peter A.; Rabinovici, Gil D.; Rojas, Julio C.; Rosen, Howie J.; Staffaroni, Adam M.; Boeve, Brad F.; Dickerson, Brad C.; Grossman, Murray; Huey, Edward D.; Irwin, David J.; Litvan, Irene; Pantelyat, Alexander Y.; Tartaglia, Maria Carmela; Dage, Jeffrey L.; Boxer, Adam L.; Neurology, School of MedicineImportance: Plasma phosphorylated tau217 (p-tau217), a biomarker of Alzheimer disease (AD), is of special interest in corticobasal syndrome (CBS) because autopsy studies have revealed AD is the driving neuropathology in up to 40% of cases. This differentiates CBS from other 4-repeat tauopathy (4RT)-associated syndromes, such as progressive supranuclear palsy Richardson syndrome (PSP-RS) and nonfluent primary progressive aphasia (nfvPPA), where underlying frontotemporal lobar degeneration (FTLD) is typically the primary neuropathology. Objective: To validate plasma p-tau217 against positron emission tomography (PET) in 4RT-associated syndromes, especially CBS. Design, setting, and participants: This multicohort study with 6, 12, and 24-month follow-up recruited adult participants between January 2011 and September 2020 from 8 tertiary care centers in the 4RT Neuroimaging Initiative (4RTNI). All participants with CBS (n = 113), PSP-RS (n = 121), and nfvPPA (n = 39) were included; other diagnoses were excluded due to rarity (n = 29). Individuals with PET-confirmed AD (n = 54) and PET-negative cognitively normal control individuals (n = 59) were evaluated at University of California San Francisco. Operators were blinded to the cohort. Main outcome and measures: Plasma p-tau217, measured by Meso Scale Discovery electrochemiluminescence, was validated against amyloid-β (Aβ) and flortaucipir (FTP) PET. Imaging analyses used voxel-based morphometry and bayesian linear mixed-effects modeling. Clinical biomarker associations were evaluated using longitudinal mixed-effect modeling. Results: Of 386 participants, 199 (52%) were female, and the mean (SD) age was 68 (8) years. Plasma p-tau217 was elevated in patients with CBS with positive Aβ PET results (mean [SD], 0.57 [0.43] pg/mL) or FTP PET (mean [SD], 0.75 [0.30] pg/mL) to concentrations comparable to control individuals with AD (mean [SD], 0.72 [0.37]), whereas PSP-RS and nfvPPA showed no increase relative to control. Within CBS, p-tau217 had excellent diagnostic performance with area under the receiver operating characteristic curve (AUC) for Aβ PET of 0.87 (95% CI, 0.76-0.98; P < .001) and FTP PET of 0.93 (95% CI, 0.83-1.00; P < .001). At baseline, individuals with CBS-AD (n = 12), defined by a PET-validated plasma p-tau217 cutoff 0.25 pg/mL or greater, had increased temporoparietal atrophy at baseline compared to individuals with CBS-FTLD (n = 39), whereas longitudinally, individuals with CBS-FTLD had faster brainstem atrophy rates. Individuals with CBS-FTLD also progressed more rapidly on a modified version of the PSP Rating Scale than those with CBS-AD (mean [SD], 3.5 [0.5] vs 0.8 [0.8] points/year; P = .005). Conclusions and relevance: In this cohort study, plasma p-tau217 had excellent diagnostic performance for identifying Aβ or FTP PET positivity within CBS with likely underlying AD pathology. Plasma P-tau217 may be a useful and inexpensive biomarker to select patients for CBS clinical trials.Item Structure of Tau filaments in Prion protein amyloidoses(Springer, 2021-08) Hallinan, Grace I.; Hoq, Md Rejaul; Ghosh, Manali; Vago, Frank S.; Fernandez, Anllely; Garringer, Holly J.; Vidal, Ruben; Jiang, Wen; Ghetti, Bernardino; Pathology and Laboratory Medicine, School of MedicineIn human neurodegenerative diseases associated with the intracellular aggregation of Tau protein, the ordered cores of Tau filaments adopt distinct folds. Here, we analyze Tau filaments isolated from the brain of individuals affected by Prion-Protein cerebral amyloid angiopathy (PrP-CAA) with a nonsense mutation in the PRNP gene that leads to early termination of translation of PrP (Q160Ter or Q160X), and Gerstmann-Sträussler-Scheinker (GSS) disease, with a missense mutation in the PRNP gene that leads to an amino acid substitution at residue 198 (F198S) of PrP. The clinical and neuropathologic phenotypes associated with these two mutations in PRNP are different; however, the neuropathologic analyses of these two genetic variants have consistently shown the presence of numerous neurofibrillary tangles (NFTs) made of filamentous Tau aggregates in neurons. We report that Tau filaments in PrP-CAA (Q160X) and GSS (F198S) are composed of 3-repeat and 4-repeat Tau isoforms, having a striking similarity to NFTs in Alzheimer disease (AD). In PrP-CAA (Q160X), Tau filaments are made of both paired helical filaments (PHFs) and straight filaments (SFs), while in GSS (F198S), only PHFs were found. Mass spectrometry analyses of Tau filaments extracted from PrP-CAA (Q160X) and GSS (F198S) brains show the presence of post-translational modifications that are comparable to those seen in Tau aggregates from AD. Cryo-EM analysis reveals that the atomic models of the Tau filaments obtained from PrP-CAA (Q160X) and GSS (F198S) are identical to those of the Tau filaments from AD, and are therefore distinct from those of Pick disease, chronic traumatic encephalopathy, and corticobasal degeneration. Our data support the hypothesis that in the presence of extracellular amyloid deposits and regardless of the primary amino acid sequence of the amyloid protein, similar molecular mechanisms are at play in the formation of identical Tau filaments.Item The tauopathies: Neuroimaging characteristics and emerging experimental therapies(Wiley, 2022) Riley, Kalen J.; Graner, Brian D.; Veronesi, Michael C.; Radiology and Imaging Sciences, School of MedicineThe tauopathies are a heterogeneous group of neurodegenerative disorders in which the prevailing underlying disease process is intracellular deposition of abnormal misfolded tau protein. Diseases often categorized as tauopathies include progressive supranuclear palsy, chronic traumatic encephalopathy, corticobasal degeneration, and frontotemporal lobar degeneration. Tauopathies can be classified through clinical assessment, imaging findings, histologic validation, or molecular biomarkers tied to the underlying disease mechanism. Many tauopathies vary in their clinical presentation and overlap substantially in presentation, making clinical diagnosis of a specific primary tauopathy difficult. Anatomic imaging findings are also rarely specific to a single tauopathy, and when present may not manifest until well after the point at which therapy may be most impactful. Molecular biomarkers hold the most promise for patient care and form a platform upon which emerging diagnostic and therapeutic applications could be developed. One of the most exciting developments utilizing these molecular biomarkers for assessment of tau deposition within the brain is tau‐PET imaging utilizing novel ligands that specifically target tau protein. This review will discuss the background, significance, and clinical presentation of each tauopathy with additional attention to the pathologic mechanisms at the protein level. The imaging characteristics will be outlined with select examples of emerging imaging techniques. Finally, current treatment options and emerging therapies will be discussed. This is by no means a comprehensive review of the literature but is instead intended for the practicing radiologist as an overview of a rapidly evolving topic.