- Browse by Subject
Browsing by Subject "Core Binding Factor Alpha 2 Subunit"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item MiR-24 is required for hematopoietic differentiation of mouse embryonic stem cells(PLoS, 2015-01-29) Roy, Lynn; Bikorimana, Emmanuel; Lapid, Danica; Choi, Hyewon; Nguyen, Tan; Dahl, Richard; Department of Microbiology and Immunology, IU School of MedicineOverexpression of miRNA, miR-24, in mouse hematopoietic progenitors increases monocytic/ granulocytic differentiation and inhibits B cell development. To determine if endogenous miR-24 is required for hematopoiesis, we antagonized miR-24 in mouse embryonic stem cells (ESCs) and performed in vitro differentiations. Suppression of miR-24 resulted in an inability to produce blood and hematopoietic progenitors (HPCs) from ESCs. The phenotype is not a general defect in mesoderm production since we observe production of nascent mesoderm as well as mesoderm derived cardiac muscle and endothelial cells. Results from blast colony forming cell (BL-CFC) assays demonstrate that miR-24 is not required for generation of the hemangioblast, the mesoderm progenitor that gives rise to blood and endothelial cells. However, expression of the transcription factors Runx1 and Scl is greatly reduced, suggesting an impaired ability of the hemangioblast to differentiate. Lastly, we observed that known miR-24 target, Trib3, is upregulated in the miR-24 antagonized embryoid bodies (EBs). Overexpression of Trib3 alone in ESCs was able to decrease HPC production, though not as great as seen with miR-24 knockdown. These results demonstrate an essential role for miR-24 in the hematopoietic differentiation of ESCs. Although many miRNAs have been implicated in regulation of hematopoiesis, this is the first miRNA observed to be required for the specification of mammalian blood progenitors from early mesoderm.Item PRMT4 blocks myeloid differentiation by assembling a methyl-RUNX1-dependent repressor complex(Elsevier B.V., 2013-12-26) Vu, Ly P.; Perna, Fabiana; Wang, Lan; Voza, Francesca; Figueroa, Maria E.; Tempst, Paul; Erdjument-Bromage, Hediye; Gao, Rui; Chen, Sisi; Paietta, Elisabeth; Deblasio, Tony; Melnick, Ari; Liu, Yan; Zhao, Xinyang; Nimer, Stephen D.; Department of Pediatrics, IU School of MedicineDefining the role of epigenetic regulators in hematopoiesis has become critically important, as recurrent mutations or aberrant expression of these genes has been identified in both myeloid and lymphoid hematological malignancies. We found that PRMT4, a type I arginine methyltransferase, whose function in normal and malignant hematopoiesis is unknown, is overexpressed in AML patient samples. Overexpression of PRMT4 blocks the myeloid differentiation of human stem/progenitor cells (HSPCs) while its knockdown is sufficient to induce myeloid differentiation of HSPCs. We demonstrated that PRMT4 represses the expression of miR-223 in HSPCs via the methylation of RUNX1, which triggers the assembly of a multi-protein repressor complex that includes DPF2. As part of a feedback loop, PRMT4 expression is repressed post-transcriptionally by miR-223. Depletion of PRMT4 results in differentiation of myeloid leukemia cells in vitro and their decrease proliferation in vivo. Thus, targeting PRMT4 holds potential as a novel therapy for acute myelogenous leukemia.