ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Copy number variations"

Now showing 1 - 3 of 3
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Convergence of genes and cellular pathways dysregulated in autism spectrum disorders
    (Elsevier, 2014-03-25) Pinto, Dalila; Delaby, Elsa; Merico, Daniele; Barbosa, Mafalda; Merikangas, Alison; Klei, Lambertus; Thiruvahindrapuram, Bhooma; Xu, Xiao; Ziman, Robert; Wang, Zhuozhi; Vorstman, Jacob A.S.; Thompson, Ann; Regan, Regina; Pilorge, Marion; Pellecchia, Giovanna; Pagnamenta, Alistair T.; Oliveira, Barbara; Marshall, Christian R.; Magalhaes, Tiago R.; Lowe, Jennifer K.; Howe, Jennifer L.; Griswold, Anthony J.; Gilbert, John; Duketis, Eftichia; Dombroski, Beth A.; De Jonge, Maretha V.; Cuccaro, Michael; Crawford, Emily L.; Correia, Catarina T.; Conroy, Judith; Conceicao, Ines C.; Chiocchetti, Andreas G.; Casey, Jillian P.; Cai, Guiqing; Cabrol, Christelle; Bolshakova, Nadia; Bacchelli, Elena; Anney, Richard; Gallinger, Steven; Cotterchio, Michelle; Casey, Graham; Zwaigenbaum, Lonnie; Wittemeyer, Kerstin; Wing, Kirsty; Wallace, Simon; van Engeland, Herman; Tryfon, Ana; Thomson, Susanne; Soorya, Latha; Roge´, Bernadette; Roberts, Wendy; Poustka, Fritz; Mouga, Susana; Minshew, Nancy; McInnes, L. Alison; McGrew, Susan G.; Lord, Catherine; Leboyer, Marion; Le Couteur, Ann S.; Kolevzon, Alexander; Gonzalez, Patricia Jimenez; Jacob, Suma; Holt, Richard; Guter, Stephen; Green, Jonathan; Green, Andrew; Gillberg, Christopher; Fernandez, Bridget A.; Duque, Frederico; Delorme, Richard; Dawson, Geraldine; Chaste, Pauline; Cafe, Catia; Brennan, Sean; Bourgeron, Thomas; Thomas, Patrick F.; Bolte, Sven; Bernier, Raphael; Baird, Gillian; Bailey, Anthony J.; Anthony J., Evdokia; Almeida, Joana; Wijsman, Ellen M.; Vieland, Veronica J.; Vicente, Astrid M.; Schellenberg, Gerard D.; Pericak-Vance, Margaret; Paterson, Andrew D.; Parr, Jeremy R.; Oliveira, Guiomar; Nurnberger, John I.; Monaco, Anthony P.; Maestrini, Elena; Klauck, Sabine M.; Hakonarson, Hakon; Haines, Jonathan L.; Geschwind, Daniel H.; Freitag, Christine M.; Folstein, Susan E.; Ennis, Sean; Coon, Hilary; Battaglia, Agatino; Szatmari, Peter; Sutcliffe, James S.; Hallmayer, Joachim; Gill, Michael; Cook, Edwin H.; Buxbaum, Joseph D.; Devlin, Bernie; Gallagher, Louise; Betancur, Catalina; Scherer, Stephen W.; Psychiatry, School of Medicine
    Rare copy-number variation (CNV) is an important source of risk for autism spectrum disorders (ASDs). We analyzed 2,446 ASD-affected families and confirmed an excess of genic deletions and duplications in affected versus control groups (1.41-fold, p = 1.0 × 10−5) and an increase in affected subjects carrying exonic pathogenic CNVs overlapping known loci associated with dominant or X-linked ASD and intellectual disability (odds ratio = 12.62, p = 2.7 × 10−15, ∼3% of ASD subjects). Pathogenic CNVs, often showing variable expressivity, included rare de novo and inherited events at 36 loci, implicating ASD-associated genes (CHD2, HDAC4, and GDI1) previously linked to other neurodevelopmental disorders, as well as other genes such as SETD5, MIR137, and HDAC9. Consistent with hypothesized gender-specific modulators, females with ASD were more likely to have highly penetrant CNVs (p = 0.017) and were also overrepresented among subjects with fragile X syndrome protein targets (p = 0.02). Genes affected by de novo CNVs and/or loss-of-function single-nucleotide variants converged on networks related to neuronal signaling and development, synapse function, and chromatin regulation.
  • Loading...
    Thumbnail Image
    Item
    Copy Number Variation and Haplotype Analysis of 17q21.31 Reveals Increased Risk Associated with Progressive Supranuclear Palsy and Gene Expression Changes in Neuronal Cells
    (Wiley, 2025) Wang, Hui; Chang, Timothy S.; Dombroski, Beth A.; Cheng, Po-Liang; Si, Ya-Qin; Tucci, Albert; Patil, Vishakha; Valiente-Banuet, Leopoldo; Li, Chong; Farrell, Kurt; Mclean, Catriona; Molina-Porcel, Laura; Rajput, Alex; De Deyn, Peter Paul; Le Bastard, Nathalie; Gearing, Marla; Donker Kaat, Laura; Van Swieten, John C.; Dopper, Elise; Ghetti, Bernardino F.; Newell, Kathy L.; Troakes, Claire; de Yébenes, Justo G.; Rábano-Gutierrez, Alberto; Meller, Tina; Oertel, Wolfgang H.; Respondek, Gesine; Stamelou, Maria; Arzberger, Thomas; Roeber, Sigrun; Müller, Ulrich; Hopfner, Franziska; Pastor, Pau; Brice, Alexis; Durr, Alexandra; Le Ber, Isabelle; Beach, Thomas G.; Serrano, Geidy E.; Hazrati, Lili-Naz; Litvan, Irene; Rademakers, Rosa; Ross, Owen A.; Galasko, Douglas; Boxer, Adam L.; Miller, Bruce L.; Seeley, Willian W.; Van Deerlin, Vivianna M.; Lee, Edward B.; White, Charles L., III; Morris, Huw R.; de Silva, Rohan; Crary, John F.; Goate, Alison M.; Friedman, Jeffrey S.; Compta, Yaroslau; Leung, Yuk Yee; Coppola, Giovanni; Naj, Adam C.; Wang, Li-San; PSP Genetics Study Group; Dalgard, Clifton; Dickson, Dennis W.; Höglinger, Günter U.; Tzeng, Jung-Ying; Geschwind, Daniel H.; Schellenberg, Gerard D.; Lee, Wan-Ping; Pathology and Laboratory Medicine, School of Medicine
    Background: The 17q21.31 region with various structural forms characterized by the H1/H2 haplotypes and three large copy number variations (CNVs) represents the strongest risk locus in progressive supranuclear palsy (PSP). Objective: To investigate the association between CNVs and structural forms on 17q.21.31 with the risk of PSP. Methods: Utilizing whole genome sequencing data from 1684 PSP cases and 2392 controls, the three large CNVs (α, β, and γ) and structural forms within 17q21.31 were identified and analyzed for their association with PSP. Results: We found that the copy number of γ was associated with increased PSP risk (odds ratio [OR] = 1.10, P = 0.0018). From H1β1γ1 (OR = 1.21) and H1β2γ1 (OR = 1.24) to H1β1γ4 (OR = 1.57), structural forms of H1 with additional copies of γ displayed a higher risk for PSP. The frequency of the risk sub-haplotype H1c rises from 1% in individuals with two γ copies to 88% in those with eight copies. Additionally, γ duplication up-regulates expression of ARL17B, LRRC37A/LRRC37A2, and NSFP1, while down-regulating KANSL1. Single-nucleus RNA-seq of the dorsolateral prefrontal cortex analysis reveals γ duplication primarily up-regulates LRRC37A/LRRC37A2 in neuronal cells. Conclusions: The copy number of γ is associated with the risk of PSP after adjusting for H1/H2, indicating that the complex structure at 17q21.31 is an important consideration when evaluating the genetic risk of PSP.
  • Loading...
    Thumbnail Image
    Item
    DNA copy number variations in children with vesicoureteral reflux and urinary tract infections
    (PLOS, 2019-08-12) Liang, Dong; McHugh, Kirk M.; Brophy, Pat D.; Shaikh, Nader; Manak, J. Robert; Andrews, Peter; Hakker, Inessa; Wang, Zihua; Schwaderer, Andrew L.; Hains, David S.; Pediatrics, School of Medicine
    Vesicoureteral reflux (VUR) is a complex, heritable disorder. Genome-wide linkage analyses of families affected by VUR have revealed multiple genomic loci linked to VUR. These loci normally harbor a number of genes whose biologically functional variant is yet to be identified. DNA copy number variations (CNVs) have not been extensively studied at high resolution in VUR patients. In this study, we performed array comparative genomic hybridization (aCGH) on a cohort of patients with a history of both VUR and urinary tract infection (UTI) with the objective of identifying genetic variations responsible for VUR and/or UTI susceptibility. UTI/VUR-associated CNVs were identified by aCGH results from the 192 Randomized Intervention for Children With Vesicoureteral Reflux (RIVUR) patients compared to 683 controls. Rare, large CNVs that are likely pathogenic and lead to VUR development were identified using stringent analysis criteria. Because UTI is a common affliction with multiple risk factors, we utilized standard analysis to identify potential disease-modifying CNVs that can contribute to UTI risk. Gene ontology analysis identified that CNVs in innate immunity and development genes were enriched in RIVUR patients. CNVs affecting innate immune genes may contribute to UTI susceptibility in VUR patients and may provide the first step in assisting clinical medicine in determining adverse outcome risk in children with VUR.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University