- Browse by Subject
Browsing by Subject "Contusions"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Assault-related anoxia and neck injuries in US emergency departments(BMJ, 2024-05-20) Khurana, Bharti; Prakash, Jaya; Lewis-Oconnor, Annie; Green, William M.; Rexrode, Katherine; Loder, Randall T.; Orthopaedic Surgery, School of MedicineBackground: Early identification of non-fatal strangulation in the context of intimate partner violence (IPV) is crucial due to its severe physical and psychological consequences for the individual experiencing it. This study investigates the under-reported and underestimated burden of IPV-related non-fatal strangulation by analysing assault-related injuries leading to anoxia and neck injuries. Methods: An IRB-exempt, retrospective review of prospectively collected data were performed using the National Electronic Injury Surveillance System All Injury Programme data from 2005 to 2019 for all assaults resulting in anoxia and neck injuries. The type and mechanism of assault injuries resulting in anoxia (excluding drowning, poisoning and aspiration), anatomical location of assault-related neck injuries and neck injury diagnosis by morphology, were analysed using statistical methods accounting for the weighted stratified nature of the data. Results: Out of a total of 24 493 518 assault-related injuries, 11.6% (N=2 842 862) resulted from IPV (defined as perpetrators being spouses/partners). Among 22 764 cases of assault-related anoxia, IPV accounted for 40.4%. Inhalation and suffocation were the dominant mechanisms (60.8%) of anoxia, with IPV contributing to 41.9% of such cases. Neck injuries represented only 3.0% of all assault-related injuries, with IPV accounting for 21% of all neck injuries and 31.9% of neck contusions. Conclusions: The study reveals a significant burden of IPV-related anoxia and neck injuries, highlighting the importance of recognising IPV-related strangulation. Comprehensive screening for IPV should be conducted in patients with unexplained neck injuries, and all IPV patients should be screened for strangulation events.Item Systemic Bisperoxovanadium Activates Akt/mTOR, Reduces Autophagy, and Enhances Recovery following Cervical Spinal Cord Injury(Public Library of Science, 2012) Walker, Chandler L.; Walker, Melissa J.; Liu, Nai-Kui; Risberg, Emelie C.; Gao, Xiang; Chen, Jinhui; Xu, Xiao-Ming; Anatomy, Cell Biology and Physiology, School of MedicineSecondary damage following primary spinal cord injury extends pathology beyond the site of initial trauma, and effective management is imperative for maximizing anatomical and functional recovery. Bisperoxovanadium compounds have proven neuroprotective effects in several central nervous system injury/disease models, however, no mechanism has been linked to such neuroprotection from bisperoxovanadium treatment following spinal trauma. The goal of this study was to assess acute bisperoxovanadium treatment effects on neuroprotection and functional recovery following cervical unilateral contusive spinal cord injury, and investigate a potential mechanism of the compound's action. Two experimental groups of rats were established to 1) assess twice-daily 7 day treatment of the compound, potassium bisperoxo (picolinato) vanadium, on long-term recovery of skilled forelimb activity using a novel food manipulation test, and neuroprotection 6 weeks following injury and 2) elucidate an acute mechanistic link for the action of the drug post-injury. Immunofluorescence and Western blotting were performed to assess cellular signaling 1 day following SCI, and histochemistry and forelimb functional analysis were utilized to assess neuroprotection and recovery 6 weeks after injury. Bisperoxovanadium promoted significant neuroprotection through reduced motorneuron death, increased tissue sparing, and minimized cavity formation in rats. Enhanced forelimb functional ability during a treat-eating assessment was also observed. Additionally, bisperoxovanadium significantly enhanced downstream Akt and mammalian target of rapamycin signaling and reduced autophagic activity, suggesting inhibition of the phosphatase and tensin homologue deleted on chromosome ten as a potential mechanism of bisperoxovanadium action following traumatic spinal cord injury. Overall, this study demonstrates the efficacy of a clinically applicable pharmacological therapy for rapid initiation of neuroprotection post-spinal cord injury, and sheds light on the signaling involved in its action.