- Browse by Subject
Browsing by Subject "Control Systems"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
Item Integrating Data-driven Control Methods with Motion Planning: A Deep Reinforcement Learning-based Approach(2023-12) Prabu, Avinash; Li, Lingxi; Chen, Yaobin; King, Brian; Tian, RenranPath-tracking control is an integral part of motion planning in autonomous vehicles, in which the vehicle's lateral and longitudinal positions are controlled by a control system that will provide acceleration and steering angle commands to ensure accurate tracking of longitudinal and lateral movements in reference to a pre-defined trajectory. Extensive research has been conducted to address the growing need for efficient algorithms in this area. In this dissertation, a scenario and machine learning-based data-driven control approach is proposed for a path-tracking controller. Firstly, a Deep Reinforcement Learning model is developed to facilitate the control of longitudinal speed. A Deep Deterministic Policy Gradient algorithm is employed as the primary algorithm in training the reinforcement learning model. The main objective of this model is to maintain a safe distance from a lead vehicle (if present) or track a velocity set by the driver. Secondly, a lateral steering controller is developed using Neural Networks to control the steering angle of the vehicle with the main goal of following a reference trajectory. Then, a path-planning algorithm is developed using a hybrid A* planner. Finally, the longitudinal and lateral control models are coupled together to obtain a complete path-tracking controller that follows a path generated by the hybrid A* algorithm at a wide range of vehicle speeds. The state-of-the-art path-tracking controller is also built using Model Predictive Control and Stanley control to evaluate the performance of the proposed model. The results showed the effectiveness of both proposed models in the same scenario, in terms of velocity error, lateral yaw angle error, and lateral distance error. The results from the simulation show that the developed hybrid A* algorithm has good performance in comparison to the state-of-the-art path planning algorithms.