ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Conserved sequence"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    DDIG-in: discriminating between disease-associated and neutral non-frameshifting micro-indels
    (Springer Nature, 2013-03-13) Zhao, Huiying; Yang, Yuedong; Lin, Hai; Zhang, Xinjun; Mort, Matthew; Cooper, David N.; Liu, Yunlong; Zhou, Yaoqi; Medical and Molecular Genetics, School of Medicine
    Micro-indels (insertions or deletions shorter than 21 bps) constitute the second most frequent class of human gene mutation after single nucleotide variants. Despite the relative abundance of non-frameshifting indels, their damaging effect on protein structure and function has gone largely unstudied. We have developed a support vector machine-based method named DDIG-in (Detecting disease-causing genetic variations due to indels) to prioritize non-frameshifting indels by comparing disease-associated mutations with putatively neutral mutations from the 1,000 Genomes Project. The final model gives good discrimination for indels and is robust against annotation errors. A webserver implementing DDIG-in is available at http://sparks-lab.org/ddig.
  • Loading...
    Thumbnail Image
    Item
    The mutational landscape and functional effects of noncoding ultraconserved elements in human cancers
    (American Association for the Advancement of Science, 2025) Bayraktar, Recep; Tang, Yitao; Dragomir, Mihnea P.; Ivan, Cristina; Peng, Xinxin; Fabris, Linda; Zhang, Jianhua; Carugo, Alessandro; Aneli, Serena; Liu, Jintan; Chen, Mei-Ju M.; Srinivasan, Sanjana; Sahnoune, Iman; Bayraktar, Emine; Akdemir, Kadir C.; Chen, Meng; Narayanan, Pranav; Huang, Wilson; Ott, Leonie Florence; Eterovic, Agda Karina; Villarreal, Oscar Eduardo; Mohammad, Mohammad Moustaf; Peoples, Michael D.; Walsh, Danielle M.; Hernandez, Jon Andrew; Morgan, Margaret B.; Shaw, Kenna R.; Davis, Jennifer S.; Menter, David; Tam, Constantine S.; Yeh, Paul; Dawson, Sarah-Jane; Rassenti, Laura Z.; Kipps, Thomas J.; Kunej, Tanja; Estrov, Zeev; Joosse, Simon A.; Pagani, Luca; Alix-Panabières, Catherine; Pantel, Klaus; Ferajoli, Alessandra; Futreal, Andrew; Wistuba, Ignacio I.; Radovich, Milan; Kopetz, Scott; Keating, Michael J.; Draetta, Giulio F.; Mattick, John S.; Liang, Han; Calin, George A.; Surgery, School of Medicine
    The mutational landscape of phylogenetically ultraconserved elements (UCEs), especially those in noncoding DNAs (ncUCEs), and their functional relevance in cancers remain poorly characterized. Here, we perform a systematic analysis of whole-genome and in-house targeted UCE sequencing datasets from more than 3000 patients with cancer of 13,736 UCEs and demonstrate that ncUCE somatic alterations are common. Using a multiplexed CRISPR knockout screen in colorectal cancer cells, we show that the loss of several altered ncUCEs significantly affects cell proliferation. In-depth functional studies in vitro and in vivo further reveal that specific ncUCEs can be enhancers of tumor suppressors (such as ARID1B) and silencers of oncogenic proteins (such as RPS13). Moreover, several miRNAs located in ncUCEs are recurrently mutated. Mutations in miR-142 locus can affect the Drosha-mediated processing of precursor miRNAs, resulting in the down-regulation of the mature transcript. These results provide systematic evidence that specific ncUCEs play diverse regulatory roles in cancer.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University