- Browse by Subject
Browsing by Subject "Congenital heart defects"
Now showing 1 - 10 of 12
Results Per Page
Sort Options
Item Complex cardiac defects after ethanol exposure during discrete cardiogenic events in zebrafish: prevention with folic acid(Wiley, 2013-10) Swapnalee, Sarmah; Marrs, James A.; Biology, School of ScienceFetal alcohol spectrum disorder (FASD) describes a range of birth defects including various congenital heart defects (CHDs). Mechanisms of FASD-associated CHDs are not understood. Whether alcohol interferes with a single critical event or with multiple events in heart formation is not known. RESULTS: Our zebrafish embryo experiments showed that ethanol interrupts different cardiac regulatory networks and perturbs multiple steps of cardiogenesis (specification, myocardial migration, looping, chamber morphogenesis, and endocardial cushion formation). Ethanol exposure during gastrulation until cardiac specification or during myocardial midline migration did not produce severe or persistent heart development defects. However, exposure comprising gastrulation until myocardial precursor midline fusion or during heart patterning stages produced aberrant heart looping and defective endocardial cushions. Continuous exposure during entire cardiogenesis produced complex cardiac defects leading to severely defective myocardium, endocardium, and endocardial cushions. Supplementation of retinoic acid with ethanol partially rescued early heart developmental defects, but the endocardial cushions did not form correctly. In contrast, supplementation of folic acid rescued normal heart development, including the endocardial cushions. CONCLUSIONS: Our results indicate that ethanol exposure interrupted divergent cardiac morphogenetic events causing heart defects. Folic acid supplementation was effective in preventing a wide spectrum of ethanol-induced heart developmental defects.Item Congenital heart defects caused by FOXJ1(Oxford University Press, 2023) Padua, Maria B.; Helm, Benjamin M.; Wells, John R.; Smith, Amanda M.; Bellchambers, Helen M.; Sridhar, Arthi; Ware, Stephanie M.; Pediatrics, School of MedicineFOXJ1 is expressed in ciliated cells of the airways, testis, oviduct, central nervous system and the embryonic left-right organizer. Ablation or targeted mutation of Foxj1 in mice, zebrafish and frogs results in loss of ciliary motility and/or reduced length and number of motile cilia, affecting the establishment of the left-right axis. In humans, heterozygous pathogenic variants in FOXJ1 cause ciliopathy leading to situs inversus, obstructive hydrocephalus and chronic airway disease. Here, we report a novel truncating FOXJ1 variant (c.784_799dup; p.Glu267Glyfs*12) identified by clinical exome sequencing from a patient with isolated congenital heart defects (CHD) which included atrial and ventricular septal defects, double outlet right ventricle (DORV) and transposition of the great arteries. Functional experiments show that FOXJ1 c.784_799dup; p.Glu267Glyfs*12, unlike FOXJ1, fails to induce ectopic cilia in frog epidermis in vivo or to activate the ADGB promoter, a downstream target of FOXJ1 in cilia, in transactivation assays in vitro. Variant analysis of patients with heterotaxy or heterotaxy-related CHD indicates that pathogenic variants in FOXJ1 are an infrequent cause of heterotaxy. Finally, we characterize embryonic-stage CHD in Foxj1 loss-of-function mice, demonstrating randomized heart looping. Abnormal heart looping includes reversed looping (dextrocardia), ventral looping and no looping/single ventricle hearts. Complex CHDs revealed by histological analysis include atrioventricular septal defects, DORV, single ventricle defects as well as abnormal position of the great arteries. These results indicate that pathogenic variants in FOXJ1 can cause isolated CHD.Item Embryonic Ethanol Exposure Affects Early- and Late-Added Cardiac Precursors and Produces Long-Lasting Heart Chamber Defects in Zebrafish(MDPI, 2017-12-01) Sarmah, Swapnalee; Marrs, James A.; Biology, School of ScienceDrinking mothers expose their fetuses to ethanol, which produces birth defects: craniofacial defects, cognitive impairment, sensorimotor disabilities and organ deformities, collectively termed as fetal alcohol spectrum disorder (FASD). Various congenital heart defects (CHDs) are present in FASD patients, but the mechanisms of alcohol-induced cardiogenesis defects are not completely understood. This study utilized zebrafish embryos and older larvae to understand FASD-associated CHDs. Ethanol-induced cardiac chamber defects initiated during embryonic cardiogenesis persisted in later zebrafish life. In addition, myocardial damage was recognizable in the ventricle of the larvae that were exposed to ethanol during embryogenesis. Our studies of the pathogenesis revealed that ethanol exposure delayed differentiation of first and second heart fields and reduced the number of early- and late-added cardiomyocytes in the heart. Ethanol exposure also reduced the number of endocardial cells. Together, this study showed that ethanol-induced heart defects were present in late-stage zebrafish larvae. Reduced numbers of cardiomyocytes partly accounts for the ethanol-induced zebrafish heart defects.Item Genetic and Developmental Basis of Cardiovascular Malformations(Elsevier, 2016-03) Azhar, Mohamad; Ware, Stephanie M.; Department of Pediatrics, IU School of MedicineCardiovascular malformations (CVMs) are the most common birth defect, occurring in 1% to 5% of all live births. Genetic, epigenetic, and environmental factors all influence the development of CVMs, and an improved understanding of the causation of CVMs is a prerequisite for prevention. Cardiac development is a complex, multistep process of morphogenesis that is under genetic regulation. Although the genetic contribution to CVMs is well recognized, the genetic causes of human CVMs are still identified infrequently. This article discusses the key genetic concepts characterizing human CVMs, their developmental basis, and the critical developmental and genetic concepts underlying their pathogenesis.Item Genetic architecture of laterality defects revealed by whole exome sequencing(Springer Nature, 2019-04) Li, Alexander H.; Hanchard, Neil A.; Azamian, Mahshid; D’Alessandro, Lisa C. A.; Coban-Akdemir, Zeynep; Lopez, Keila N.; Hall, Nancy J.; Dickerson, Heather; Nicosia, Annarita; Fernbach, Susan; Boone, Philip M.; Gambin, Tomaz; Karaca, Ender; Gu, Shen; Yuan, Bo; Jhangiani, Shalini N.; Doddapaneni, HarshaVardhan; Hu, Jianhong; Dinh, Huyen; Jayaseelan, Joy; Muzny, Donna; Lalani, Seema; Towbin, Jeffrey; Penny, Daniel; Fraser, Charles; Martin, James; Lupski, James R.; Gibbs, Richard A.; Boerwinkle, Eric; Ware, Stephanie M.; Belmont, John W.; Pediatrics, School of MedicineAberrant left-right patterning in the developing human embryo can lead to a broad spectrum of congenital malformations. The causes of most laterality defects are not known, with variants in established genes accounting for <20% of cases. We sought to characterize the genetic spectrum of these conditions by performing whole-exome sequencing of 323 unrelated laterality cases. We investigated the role of rare, predicted-damaging variation in 1726 putative laterality candidate genes derived from model organisms, pathway analyses, and human phenotypes. We also evaluated the contribution of homo/hemizygous exon deletions and gene-based burden of rare variation. A total of 28 candidate variants (26 rare predicted-damaging variants and 2 hemizygous deletions) were identified, including variants in genes known to cause heterotaxy and primary ciliary dyskinesia (ACVR2B, NODAL, ZIC3, DNAI1, DNAH5, HYDIN, MMP21), and genes without a human phenotype association, but with prior evidence for a role in embryonic laterality or cardiac development. Sanger validation of the latter variants in probands and their parents revealed no de novo variants, but apparent transmitted heterozygous (ROCK2, ISL1, SMAD2), and hemizygous (RAI2, RIPPLY1) variant patterns. Collectively, these variants account for 7.1% of our study subjects. We also observe evidence for an excess burden of rare, predicted loss-of-function variation in PXDNL and BMS1- two genes relevant to the broader laterality phenotype. These findings highlight potential new genes in the development of laterality defects, and suggest extensive locus heterogeneity and complex genetic models in this class of birth defects.Item HAND transcription factors cooperatively specify the aorta and pulmonary trunk(Elsevier, 2021) Vincentz, Joshua W.; Firulli, Beth A.; Toolan, Kevin P.; Osterwalder, Marco; Pennacchio, Len A.; Firulli, Anthony B.; Pediatrics, School of MedicineCongenital heart defects (CHDs) affecting the cardiac outflow tract (OFT) constitute a significant cause of morbidity and mortality. The OFT develops from migratory cell populations which include the cardiac neural crest cells (cNCCs) and secondary heart field (SHF) derived myocardium and endocardium. The related transcription factors HAND1 and HAND2 have been implicated in human CHDs involving the OFT. Although Hand1 is expressed within the OFT, Hand1 NCC-specific conditional knockout mice (H1CKOs) are viable. Here we show that these H1CKOs present a low penetrance of OFT phenotypes, whereas SHF-specific Hand1 ablation does not reveal any cardiac phenotypes. Further, HAND1 and HAND2 appear functionally redundant within the cNCCs, as a reduction/ablation of Hand2 on an NCC-specific H1CKO background causes pronounced OFT defects. Double conditional Hand1 and Hand2 NCC knockouts exhibit persistent truncus arteriosus (PTA) with 100% penetrance. NCC lineage-tracing and Sema3c in situ mRNA expression reveal that Sema3c-expressing cells are mis-localized, resulting in a malformed septal bridge within the OFTs of H1CKO;H2CKO embryos. Interestingly, Hand1 and Hand2 also genetically interact within the SHF, as SHF H1CKOs on a heterozygous Hand2 background exhibit Ventricular Septal Defects (VSDs) with incomplete penetrance. Previously, we identified a BMP, HAND2, and GATA-dependent Hand1 OFT enhancer sufficient to drive reporter gene expression within the nascent OFT and aorta. Using these transcription inputs as a probe, we identify a novel Hand2 OFT enhancer, suggesting that a conserved BMP-GATA dependent mechanism transcriptionally regulates both HAND factors. These findings support the hypothesis that HAND factors interpret BMP signaling within the cNCCs to cooperatively coordinate OFT morphogenesis.Item Passive performance evaluation and validation of a viscous impeller pump for subpulmonary fontan circulatory support(Springer Nature, 2023-08-04) Yang, Weiguang; Conover, Timothy A.; Figliola, Richard S.; Giridharan, Guruprasad A.; Marsden, Alison L.; Rodefeld, Mark D.; Surgery, School of MedicinePatients with single ventricle defects undergoing the Fontan procedure eventually face Fontan failure. Long-term cavopulmonary assist devices using rotary pump technologies are currently being developed as a subpulmonary power source to prevent and treat Fontan failure. Low hydraulic resistance is a critical safety requirement in the event of pump failure (0 RPM) as a modest 2 mmHg cavopulmonary pressure drop can compromise patient hemodynamics. The goal of this study is therefore to assess the passive performance of a viscous impeller pump (VIP) we are developing for Fontan patients, and validate flow simulations against in-vitro data. Two different blade heights (1.09 mm vs 1.62 mm) and a blank housing model were tested using a mock circulatory loop (MCL) with cardiac output ranging from 3 to 11 L/min. Three-dimensional flow simulations were performed and compared against MCL data. In-silico and MCL results demonstrated a pressure drop of < 2 mmHg at a cardiac output of 7 L/min for both blade heights. There was good agreement between simulation and MCL results for pressure loss (mean difference − 0.23 mmHg 95% CI [0.24–0.71]). Compared to the blank housing model, low wall shear stress area and oscillatory shear index on the pump surface were low, and mean washout times were within 2 s. This study demonstrated the low resistance characteristic of current VIP designs in the failed condition that results in clinically acceptable minimal pressure loss without increased washout time as compared to a blank housing model under normal cardiac output in Fontan patients.Item Potential Common Pathogenic Pathways for the Left Ventricular Noncompaction Cardiomyopathy (LVNC)(Springer Nature, 2018-08) Liu, Ying; Chen, Hanying; Shou, Weinian; Pediatrics, School of MedicineVentricular trabeculation and compaction are two essential morphogenetic events for generating a functionally competent ventricular wall. A significant reduction in trabeculation is usually associated with hypoplastic wall and ventricular compact zone deficiencies, which commonly leads to embryonic heart failure and early embryonic lethality. In contrast, the arrest of ventricular wall compaction (noncompaction) is believed to be causative to the left ventricular noncompaction (LVNC), a genetically heterogeneous disorder and the third most common cardiomyopathy among pediatric patients. After critically reviewing recent findings from genetically engineered mouse models, we suggest a model which proposes that defects in myofibrillogenesis and polarization in trabecular cardiomyocytes underly the common pathogenic mechanism for ventricular noncompaction.Item Single cell evaluation of endocardial Hand2 gene regulatory networks reveals HAND2-dependent pathways that impact cardiac morphogenesis(The Company of Biologists, 2023) George, Rajani M.; Firulli, Beth A.; Podicheti, Ram; Rusch, Douglas B.; Mannion, Brandon J.; Pennacchio, Len A.; Osterwalder, Marco; Firulli, Anthony B.; Pediatrics, School of MedicineThe transcription factor HAND2 plays essential roles during cardiogenesis. Hand2 endocardial deletion (H2CKO) results in tricuspid atresia or double inlet left ventricle with accompanying intraventricular septum defects, hypo-trabeculated ventricles and an increased density of coronary lumens. To understand the regulatory mechanisms of these phenotypes, single cell transcriptome analysis of mouse E11.5 H2CKO hearts was performed revealing a number of disrupted endocardial regulatory pathways. Using HAND2 DNA occupancy data, we identify several HAND2-dependent enhancers, including two endothelial enhancers for the shear-stress master regulator KLF2. A 1.8 kb enhancer located 50 kb upstream of the Klf2 TSS imparts specific endothelial/endocardial expression within the vasculature and endocardium. This enhancer is HAND2-dependent for ventricular endocardium expression but HAND2-independent for Klf2 vascular and valve expression. Deletion of this Klf2 enhancer results in reduced Klf2 expression within ventricular endocardium. These data reveal that HAND2 functions within endocardial gene regulatory networks including shear-stress response.Item Single cell RNA analysis of the left-right organizer transcriptome reveals potential novel heterotaxy genes(Springer Nature, 2023-07-01) Bellchambers, Helen M.; Phatak, Amruta R.; Nenni, Mardi J.; Padua, Maria B.; Gao, Hongyu; Liu, Yunlong; Ware, Stephanie M.; Pediatrics, School of MedicineThe establishment of left-right patterning in mice occurs at a transient structure called the embryonic node or left-right organizer (LRO). Previous analysis of the LRO has proven challenging due to the small cell number and transient nature of this structure. Here, we seek to overcome these difficulties to define the transcriptome of the LRO. Specifically, we used single cell RNA sequencing of 0-1 somite embryos to identify LRO enriched genes which were compared to bulk RNA sequencing of LRO cells isolated by fluorescent activated cell sorting. Gene ontology analysis indicated an enrichment of genes associated with cilia and laterality terms. Furthermore, comparison to previously identified LRO genes identified 127 novel LRO genes, including Ttll3, Syne1 and Sparcl1, for which the expression patterns were validated using whole mount in situ hybridization. This list of novel LRO genes will be a useful resource for further studies on LRO morphogenesis, the establishment of laterality and the genetic causes of heterotaxy.