ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Conduction velocity"

Now showing 1 - 3 of 3
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Correlation between Electrophysiological Properties, Morphological Maturation, and Olig Gene Changes during Postnatal Motor Tract Development
    (Wiley, 2013) Cai, Jun; Zhang, Yi Ping; Shields, Lisa B. E.; Zhang, Zoe Z.; Lui, Naiqui; Xu, Xiao-Ming; Feng, Shi-Qing; Shields, Christopher B.; Neurological Surgery, School of Medicine
    This study investigated electrophysiological and histological changes as well as alterations of myelin relevant proteins of descending motor tracts in rat pups. Motor-evoked potentials (MEPs) represent descending conducting responses following stimulation of the motor cortex to responses being elicited from the lower extremities. MEP responses were recorded biweekly from postnatal (PN) week 1 to week 9 (adult). MEP latencies in PN week 1 rats averaged 23.7 ms and became shorter during early maturation, stabilizing at 6.6 ms at PN week 4. During maturation, the conduction velocity (CV) increased from 2.8 ± 0.2 at PN week 1 to 35.2 ± 3.1 mm/ms at PN week 8. Histology of the spinal cord and sciatic nerves revealed progressive axonal myelination. Expression of the oligodendrocyte precursor markers PDGFRα and NG2 were downregulated in spinal cords, and myelin-relevant proteins such as GalC, CNP, and MBP increased during maturation. Oligodendrocyte-lineage markers Olig2 and MOG, expressed in myelinated oligodendrocytes, peaked at PN week 3 and were downregulated thereafter. A similar expression pattern was observed in neurofilament M/H subunits that were extensively phosphorylated in adult spinal cords but not in neonatal spinal cords, suggesting an increase in axon diameter and myelin formation. Ultrastructural morphology in the ventrolateral funiculus (VLF) showed axon myelination of the VLF axons (99.3%) at PN week 2, while 44.6% were sheathed at PN week 1. Increased axon diameter and myelin thickness in the VLF and sciatic nerves were highly correlated to the CV (rs > 0.95). This suggests that MEPs could be a predicator of morphological maturity of myelinated axons in descending motor tracts.
  • Loading...
    Thumbnail Image
    Item
    Moderate Hypothermia (33 °C) Decreases the Susceptibility to Pacing-Induced Ventricular Fibrillation Compared with Severe Hypothermia (30 °C) by Attenuating Spatially Discordant Alternans in Isolated Rabbit Hearts
    (Taiwan Society of Cardiology, 2014-09) Hsieh, Yu-Cheng; Lin, Shien-Fong; Huang, Jin-Long; Hung, Chen-Ying; Lin, Jiunn-Cherng; Liao, Ying-Chieh; Lo, Chu-Pin; Wang, Kuo-Yang; Wu, Tsu-Juey; Department of Medicine, IU School of Medicine
    Background Severe hypothermia (SH, 30 °C) increases the risk of pacing-induced ventricular fibrillation (PIVF) by enhancing spatially discordant alternans (SDA). Whether moderate hypothermia (MH, 33 °C), which is clinically used for therapeutic hypothermia, also facilitates SDA remains unclear. We hypothesized that MH attenuates SDA occurrence compared with that achieved by SH, and decreases the susceptibility of PIVF. Methods Using an optical mapping system, action potential duration (APD)/conduction velocity restitutions and thresholds of APD alternans were determined by S1 pacing in Langendorff-perfused isolated rabbit hearts. In the MH group (n = 7), S1 pacing was performed at baseline (37 °C), after 5-min MH, and after 5-min rewarming (37 °C). In the SH group (n = 9), pacing was also performed at baseline (37 °C), after 5-min SH, and after 5-min rewarming (37 °C). The thresholds of APD alternans were defined as the longest S1 pacing cycle length at which APD alternans were detected. Results Although the thresholds of APD alternans were not different between the MH (273 ± 46 ms) and the SH (300 ± 35 ms) (p = 0.281) groups, SDA threshold was shorter (at a faster heart rate) during MH (228 ± 33 ms) than that during SH (289 ± 42 ms) (p = 0.028). At APD alternans threshold, SH hearts showed more SDA than that during MH (SH: 7 hearts, MH: 2 hearts, p = 0.049). SDA could be induced in all 9 SH hearts (100%), while only 4 MH hearts (57%) had SDA (p = 0.029). The PIVF inducibility during SH (44 ± 53%) was higher than that during MH (0%) (p = 0.043). Conclusions Compared with SH, the MH group showed greater attenuation of SDA and decreased the susceptibility of PIVF. Therefore, MH is safer as a procedural guideline for use in clinical therapeutic hypothermia than SH.
  • Loading...
    Thumbnail Image
    Item
    Subtype Identification in Acutely Dissociated Rat Nodose Ganglion Neurons Based on Morphologic Parameters
    (Ivyspring, 2013-07-27) Lu, Xiao-Long; Xu, Wen-Xiao; Yan, Zhen-Yu; Qian, Zhao; Xu, Bing; Liu, Yang; Han, Li-Min; Gao, Rui-Chen; Li, Jun-Nan; Yuan, Mei; Zhao, Chong-Bao; Qiao, Guo-fen; Li, Bai-Yan; Pediatrics, School of Medicine
    Nodose ganglia are composed of A-, Ah- and C-type neurons. Despite their important roles in regulating visceral afferent function, including cardiovascular, pulmonary, and gastrointestinal homeostasis, information about subtype-specific expression, molecular identity, and function of individual ion transporting proteins is scarce. Although experiments utilizing the sliced ganglion preparation have provided valuable insights into the electrophysiological properties of nodose ganglion neuron subtypes, detailed characterization of their electrical phenotypes will require measurements in isolated cells. One major unresolved problem, however, is the difficulty to unambiguously identify the subtype of isolated nodose ganglion neurons without current-clamp recording, because the magnitude of conduction velocity in the corresponding afferent fiber, a reliable marker to discriminate subtypes in situ, can no longer be determined. Here, we present data supporting the notion that application of an algorithm regarding to microscopic structural characteristics, such as neuron shape evaluated by the ratio between shortest and longest axis, neuron surface characteristics, like membrane roughness, and axon attachment, enables specific and sensitive subtype identification of acutely dissociated rat nodose ganglion neurons, by which the accuracy of identification is further validated by electrophysiological markers and overall positive predictive rates is 89.26% (90.04%, 76.47%, and 98.21% for A-, Ah, and C-type, respectively). This approach should aid in gaining insight into the molecular correlates underlying phenotypic heterogeneity of nodose ganglia. Additionally, several critical points that help for neuron identification and afferent conduction calibration are also discussed.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University