- Browse by Subject
Browsing by Subject "Computer-aided diagnosis"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item A review of deep learning and radiomics approaches for pancreatic cancer diagnosis from medical imaging(Wolters Kluwer, 2023) Yao, Lanhong; Zhang, Zheyuan; Keles, Elif; Yazici, Cemal; Tirkes, Temel; Bagco, Ulas; Radiology and Imaging Sciences, School of MedicinePurpose of review: Early and accurate diagnosis of pancreatic cancer is crucial for improving patient outcomes, and artificial intelligence (AI) algorithms have the potential to play a vital role in computer-aided diagnosis of pancreatic cancer. In this review, we aim to provide the latest and relevant advances in AI, specifically deep learning (DL) and radiomics approaches, for pancreatic cancer diagnosis using cross-sectional imaging examinations such as computed tomography (CT) and magnetic resonance imaging (MRI). Recent findings: This review highlights the recent developments in DL techniques applied to medical imaging, including convolutional neural networks (CNNs), transformer-based models, and novel deep learning architectures that focus on multitype pancreatic lesions, multiorgan and multitumor segmentation, as well as incorporating auxiliary information. We also discuss advancements in radiomics, such as improved imaging feature extraction, optimized machine learning classifiers and integration with clinical data. Furthermore, we explore implementing AI-based clinical decision support systems for pancreatic cancer diagnosis using medical imaging in practical settings. Summary: Deep learning and radiomics with medical imaging have demonstrated strong potential to improve diagnostic accuracy of pancreatic cancer, facilitate personalized treatment planning, and identify prognostic and predictive biomarkers. However, challenges remain in translating research findings into clinical practice. More studies are required focusing on refining these methods, addressing significant limitations, and developing integrative approaches for data analysis to further advance the field of pancreatic cancer diagnosis.Item Impact of Artificial Intelligence on Colonoscopy Surveillance After Polyp Removal: A Pooled Analysis of Randomized Trials(Elsevier, 2023) Mori, Yuichi; Wang, Pu; Løberg, Magnus; Misawa, Masashi; Repici, Alessandro; Spadaccini, Marco; Correale, Loredana; Antonelli, Giulio; Yu, Honggang; Gong, Dexin; Ishiyama, Misaki; Kudo, Shin-ei; Kamba, Shunsuke; Sumiyama, Kazuki; Saito, Yutaka; Nishino, Haruo; Liu, Peixi; Glissen Brown, Jeremy R.; Mansour, Nabil M.; Gross, Seth A.; Kalager, Mette; Bretthauer, Michael; Rex, Douglas K.; Sharma, Prateek; Berzin, Tyler M.; Hassan, Cesare; Medicine, School of MedicineBackground and aims: Artificial intelligence (AI) tools aimed at improving polyp detection have been shown to increase the adenoma detection rate during colonoscopy. However, it is unknown how increased polyp detection rates by AI affect the burden of patient surveillance after polyp removal. Methods: We conducted a pooled analysis of 9 randomized controlled trials (5 in China, 2 in Italy, 1 in Japan, and 1 in the United States) comparing colonoscopy with or without AI detection aids. The primary outcome was the proportion of patients recommended to undergo intensive surveillance (ie, 3-year interval). We analyzed intervals for AI and non-AI colonoscopies for the U.S. and European recommendations separately. We estimated proportions by calculating relative risks using the Mantel-Haenszel method. Results: A total of 5796 patients (51% male, mean 53 years of age) were included; 2894 underwent AI-assisted colonoscopy and 2902 non-AI colonoscopy. When following U.S. guidelines, the proportion of patients recommended intensive surveillance increased from 8.4% (95% CI, 7.4%-9.5%) in the non-AI group to 11.3% (95% CI, 10.2%-12.6%) in the AI group (absolute difference, 2.9% [95% CI, 1.4%-4.4%]; risk ratio, 1.35 [95% CI, 1.16-1.57]). When following European guidelines, it increased from 6.1% (95% CI, 5.3%-7.0%) to 7.4% (95% CI, 6.5%-8.4%) (absolute difference, 1.3% [95% CI, 0.01%-2.6%]; risk ratio, 1.22 [95% CI, 1.01-1.47]). Conclusions: The use of AI during colonoscopy increased the proportion of patients requiring intensive colonoscopy surveillance by approximately 35% in the United States and 20% in Europe (absolute increases of 2.9% and 1.3%, respectively). While this may contribute to improved cancer prevention, it significantly adds patient burden and healthcare costs.