- Browse by Subject
Browsing by Subject "Computer Neural Networks"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Denoising diffusion weighted imaging data using convolutional neural networks(Public Library of Science, 2022-09-15) Cheng, Hu; Vinci-Booher, Sophia; Wang, Jian; Caron, Bradley; Wen, Qiuting; Newman, Sharlene; Pestilli, Franco; Radiology and Imaging Sciences, School of MedicineDiffusion weighted imaging (DWI) with multiple, high b-values is critical for extracting tissue microstructure measurements; however, high b-value DWI images contain high noise levels that can overwhelm the signal of interest and bias microstructural measurements. Here, we propose a simple denoising method that can be applied to any dataset, provided a low-noise, single-subject dataset is acquired using the same DWI sequence. The denoising method uses a one-dimensional convolutional neural network (1D-CNN) and deep learning to learn from a low-noise dataset, voxel-by-voxel. The trained model can then be applied to high-noise datasets from other subjects. We validated the 1D-CNN denoising method by first demonstrating that 1D-CNN denoising resulted in DWI images that were more similar to the noise-free ground truth than comparable denoising methods, e.g., MP-PCA, using simulated DWI data. Using the same DWI acquisition but reconstructed with two common reconstruction methods, i.e. SENSE1 and sum-of-square, to generate a pair of low-noise and high-noise datasets, we then demonstrated that 1D-CNN denoising of high-noise DWI data collected from human subjects showed promising results in three domains: DWI images, diffusion metrics, and tractography. In particular, the denoised images were very similar to a low-noise reference image of that subject, more than the similarity between repeated low-noise images (i.e. computational reproducibility). Finally, we demonstrated the use of the 1D-CNN method in two practical examples to reduce noise from parallel imaging and simultaneous multi-slice acquisition. We conclude that the 1D-CNN denoising method is a simple, effective denoising method for DWI images that overcomes some of the limitations of current state-of-the-art denoising methods, such as the need for a large number of training subjects and the need to account for the rectified noise floor.Item Exploiting deep transfer learning for the prediction of functional non-coding variants using genomic sequence(Oxford University Press, 2022) Chen, Li; Wang, Ye; Zhao, Fengdi; Biostatistics, School of Public HealthMotivation: Though genome-wide association studies have identified tens of thousands of variants associated with complex traits and most of them fall within the non-coding regions, they may not be the causal ones. The development of high-throughput functional assays leads to the discovery of experimental validated non-coding functional variants. However, these validated variants are rare due to technical difficulty and financial cost. The small sample size of validated variants makes it less reliable to develop a supervised machine learning model for achieving a whole genome-wide prediction of non-coding causal variants. Results: We will exploit a deep transfer learning model, which is based on convolutional neural network, to improve the prediction for functional non-coding variants (NCVs). To address the challenge of small sample size, the transfer learning model leverages both large-scale generic functional NCVs to improve the learning of low-level features and context-specific functional NCVs to learn high-level features toward the context-specific prediction task. By evaluating the deep transfer learning model on three MPRA datasets and 16 GWAS datasets, we demonstrate that the proposed model outperforms deep learning models without pretraining or retraining. In addition, the deep transfer learning model outperforms 18 existing computational methods in both MPRA and GWAS datasets. Availability and implementation: https://github.com/lichen-lab/TLVar.