- Browse by Subject
Browsing by Subject "Computational modelling"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Muscle LIM Protein Force-Sensing Mediates Sarcomeric Biomechanical Signaling in Human Familial Hypertrophic Cardiomyopathy(American Heart Association, 2022) Riaz, Muhammad; Park, Jinkyu; Sewanan, Lorenzo R.; Ren, Yongming; Schwan, Jonas; Das, Subhash K.; Pomianowski, Pawel T.; Huang, Yan; Ellis, Matthew W.; Luo, Jiesi; Liu, Juli; Song, Loujin; Chen, I-Ping; Qiu, Caihong; Yazawa, Masayuki; Tellides, George; Hwa, John; Young, Lawrence H.; Yang, Lei; Marboe, Charles C.; Jacoby, Daniel L.; Campbell, Stuart G.; Qyang, Yibing; Pediatrics, School of MedicineBackground: Familial hypertrophic cardiomyopathy (HCM) is the most common inherited cardiac disease and is typically caused by mutations in genes encoding sarcomeric proteins that regulate cardiac contractility. HCM manifestations include left ventricular hypertrophy and heart failure, arrythmias, and sudden cardiac death. How dysregulated sarcomeric force production is sensed and leads to pathological remodeling remains poorly understood in HCM, thereby inhibiting the efficient development of new therapeutics. Methods: Our discovery was based on insights from a severe phenotype of an individual with HCM and a second genetic alteration in a sarcomeric mechanosensing protein. We derived cardiomyocytes from patient-specific induced pluripotent stem cells and developed robust engineered heart tissues by seeding induced pluripotent stem cell-derived cardiomyocytes into a laser-cut scaffold possessing native cardiac fiber alignment to study human cardiac mechanobiology at both the cellular and tissue levels. Coupled with computational modeling for muscle contraction and rescue of disease phenotype by gene editing and pharmacological interventions, we have identified a new mechanotransduction pathway in HCM, shown to be essential in modulating the phenotypic expression of HCM in 5 families bearing distinct sarcomeric mutations. Results: Enhanced actomyosin crossbridge formation caused by sarcomeric mutations in cardiac myosin heavy chain (MYH7) led to increased force generation, which, when coupled with slower twitch relaxation, destabilized the MLP (muscle LIM protein) stretch-sensing complex at the Z-disc. Subsequent reduction in the sarcomeric muscle LIM protein level caused disinhibition of calcineurin-nuclear factor of activated T-cells signaling, which promoted cardiac hypertrophy. We demonstrate that the common muscle LIM protein-W4R variant is an important modifier, exacerbating the phenotypic expression of HCM, but alone may not be a disease-causing mutation. By mitigating enhanced actomyosin crossbridge formation through either genetic or pharmacological means, we alleviated stress at the Z-disc, preventing the development of hypertrophy associated with sarcomeric mutations. Conclusions: Our studies have uncovered a novel biomechanical mechanism through which dysregulated sarcomeric force production is sensed and leads to pathological signaling, remodeling, and hypertrophic responses. Together, these establish the foundation for developing innovative mechanism-based treatments for HCM that stabilize the Z-disc MLP-mechanosensory complex.Item Predicted Structure and Functions of the Prototypic Alphaherpesvirus Herpes Simplex Virus Type-1 UL37 Tegument Protein(MDPI, 2022-10-04) Collantes, Therese Marie A.; Clark, Carolyn M.; Musarrat, Farhana; Jambunathan, Nithya; Jois, Seetharama; Kousoulas, Konstantin G.; Medicine, School of MedicineThe alphaherpesvirus UL37 tegument protein is a highly conserved, multi-functional protein. Mutagenesis analysis delineated the UL37 domains necessary for retrograde transport and viral replication. Specifically, the amino-terminal 480 amino acids are dispensable for virus replication in epithelial cell culture, but it is unknown whether this amino-terminal deletion affects UL37 structure and intracellular transport in epithelial cells and neurons. To investigate the structure and function of UL37, we utilized multiple computational approaches to predict and characterize the secondary and tertiary structure and other functional features. The structure of HSV-1 UL37 and Δ481N were deduced using publicly available predictive algorithms. The predicted model of HSV-1 UL37 is a stable, multi-functional, globular monomer, rich in alpha helices, with unfolded regions within the linker and the C-tail domains. The highly flexible C-tail contains predicted binding sites to the dynein intermediate chain, as well as DNA and RNA. Predicted interactions with the cytoplasmic surface of the lipid membrane suggest UL37 is a peripheral membrane protein. The Δ481N truncation did not alter the predicted structure of the UL37 C-terminus protein and its predicted interaction with dynein. We validated these models by examining the replication kinetics and transport of the Δ481N virus toward the nuclei of infected epithelial and neuronal cells. The Δ481N virus had substantial defects in virus spread; however, it exhibited no apparent defects in virus entry and intracellular transport. Using computational analyses, we identified several key features of UL37, particularly the flexible unstructured tail; we then demonstrated that the UL37 C-terminus alone is sufficient to effectively transport the virus towards the nucleus of infected epithelial and neuronal cells.