- Browse by Subject
Browsing by Subject "Compressor"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Coupled thermal-fluid analysis with flowpath-cavity interaction in a gas turbine engine(2013-12) Fitzpatrick, John Nathan; Wasfy, Tamer; Nalim, M. Razi; Yu, Huidan (Whitney); Anwar, SohelThis study seeks to improve the understanding of inlet conditions of a large rotor-stator cavity in a turbofan engine, often referred to as the drive cone cavity (DCC). The inlet flow is better understood through a higher fidelity computational fluid dynamics (CFD) modeling of the inlet to the cavity, and a coupled finite element (FE) thermal to CFD fluid analysis of the cavity in order to accurately predict engine component temperatures. Accurately predicting temperature distribution in the cavity is important because temperatures directly affect the material properties including Young's modulus, yield strength, fatigue strength, creep properties. All of these properties directly affect the life of critical engine components. In addition, temperatures cause thermal expansion which changes clearances and in turn affects engine efficiency. The DCC is fed from the last stage of the high pressure compressor. One of its primary functions is to purge the air over the rotor wall to prevent it from overheating. Aero-thermal conditions within the DCC cavity are particularly challenging to predict due to the complex air flow and high heat transfer in the rotating component. Thus, in order to accurately predict metal temperatures a two-way coupled CFD-FE analysis is needed. Historically, when the cavity airflow is modeled for engine design purposes, the inlet condition has been over-simplified for the CFD analysis which impacts the results, particularly in the region around the compressor disc rim. The inlet is typically simplified by circumferentially averaging the velocity field at the inlet to the cavity which removes the effect of pressure wakes from the upstream rotor blades. The way in which these non-axisymmetric flow characteristics affect metal temperatures is not well understood. In addition, a constant air temperature scaled from a previous analysis is used as the simplified cavity inlet air temperature. Therefore, the objectives of this study are: (a) model the DCC cavity with a more physically representative inlet condition while coupling the solid thermal analysis and compressible air flow analysis that includes the fluid velocity, pressure, and temperature fields; (b) run a coupled analysis whose boundary conditions come from computational models, rather than thermocouple data; (c) validate the model using available experimental data; and (d) based on the validation, determine if the model can be used to predict air inlet and metal temperatures for new engine geometries. Verification with experimental results showed that the coupled analysis with the 3D no-bolt CFD model with predictive boundary conditions, over-predicted the HP6 offtake temperature by 16k. The maximum error was an over-prediction of 50k while the average error was 17k. The predictive model with 3D bolts also predicted cavity temperatures with an average error of 17k. For the two CFD models with predicted boundary conditions, the case without bolts performed better than the case with bolts. This is due to the flow errors caused by placing stationary bolts in a rotating reference frame. Therefore it is recommended that this type of analysis only be attempted for drive cone cavities with no bolts or shielded bolts.Item Developing a method to calculate leaks in a compressed air line using time series pressure measurements(Elsevier, 2022-07) Jafarian, Alireza; Taheri, Saman; Daniel, Ebin; Razban, Ali; Mechanical Engineering, School of Engineering and TechnologyCompressed air is a powerful source of stored energy and is use in a variety of applications varying from painting to pressing in industrial manufacturing. One of the common problems in this system is air leakage. Air leaks forming within the compressed air piping network, act as continuous consumers and reduce the pressure within the pipes. Therefore, the air compressors will have to work harder to compensate for the losses in the pressure and preventing inefficiently of pneumatic devices. This will all cumulatively impact the manufacturer considerably when it comes to energy consumption and profits. There are multiple methods of air leak detection and accounting. The methods are usually conducted in non-production hours, the time that main air consumption within the piping is air leaks. In this paper, a model that includes both the production and non-production hours when accounting for the leaks is presented. It is observed that there is 50.33% increase in the energy losses, and 82.90% increase in the demand losses that are estimated when the effects of the air leaks are observed continuously and in real time. A real time monitoring system can provide an in-depth understanding of the compressed air system and its efficiency. The main goal of this paper is to find a nonintrusive way to calculate the amount of air as well as energy lost due to these leaks using time series pressure measurements.