ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Coinfection"

Now showing 1 - 3 of 3
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Central Nervous System Virus Infection in African Children with Cerebral Malaria
    (American Society of Tropical Medicine and Hygiene, 2020-07) Postels, Douglas G.; Osei-Tutu, Lawrence; Seydel, Karl B.; Xu, Qian; Li, Chenxi; Taylor, Terrie E.; John, Chandy C.; Mallewa, Macpherson; Solomon, Tom; Agbenyega, Tsiri; Ansong, Daniel; Opoka, Robert O.; Khan, Lillian M.; Ramachandran, Prashanth S.; Leon, Kristoffer E.; DeRisi, Joseph L.; Langelier, Charles; Wilson, Michael R.; Pediatrics, School of Medicine
    We aimed to identify the contribution of central nervous system (CNS) viral coinfection to illness in African children with retinopathy-negative or retinopathy-positive cerebral malaria (CM). We collected cerebrospinal fluid (CSF) from 272 children with retinopathy-negative or retinopathy-positive CM and selected CSF from 111 of these children (38 retinopathy positive, 71 retinopathy negative, 2 retinopathy unknown) for analysis by metagenomic next-generation sequencing. We found CSF viral coinfections in 7/38 (18.4%) retinopathy-positive children and in 18/71 (25.4%) retinopathy-negative children. Excluding HIV-1, human herpesviruses (HHV) represented 61% of viruses identified. Excluding HIV-1, CNS viral coinfection was equally likely in children who were retinopathy positive and retinopathy negative (P = 0.1431). Neither mortality nor neurological morbidity was associated with the presence of virus (odds ratio [OR] = 0.276, 95% CI: 0.056-1.363). Retinopathy-negative children with a higher temperature, lower white blood cell count, or being dehydrated were more likely to have viral coinfection. Level of consciousness at admission was not associated with CNS viral coinfection in retinopathy-negative children. Viral CNS coinfection is unlikely to contribute to coma in children with CM. The herpesviruses other than herpes simplex virus may represent incidental bystanders in CM, reactivating during acute malaria infection.
  • Loading...
    Thumbnail Image
    Item
    Coinfections with Bacteria, Fungi, and Respiratory Viruses in Patients with SARS-CoV-2: A Systematic Review and Meta-Analysis
    (MDPI, 2021-06) Alhumaid, Saad; Al Mutair, Abbas; Al Alawi, Zainab; Alshawi, Abeer M.; Alomran, Salamah A.; Almuhanna, Mohammed S.; Almuslim, Anwar A.; Bu Shafia, Ahmed H.; Alotaibi, Abdullah M.; Ahmed, Gasmelseed Y.; Rabaan, Ali A.; Al-Tawfiq, Jaffar A.; Al-Omari, Awad; Medicine, School of Medicine
    Background: Coinfection with bacteria, fungi, and respiratory viruses in SARS-CoV-2 is of particular importance due to the possibility of increased morbidity and mortality. In this meta-analysis, we calculated the prevalence of such coinfections. Methods: Electronic databases were searched from 1 December 2019 to 31 March 2021. Effect sizes of prevalence were pooled with 95% confidence intervals (CIs). To minimize heterogeneity, we performed sub-group analyses. Results: Of the 6189 papers that were identified, 72 articles were included in the systematic review (40 case series and 32 cohort studies) and 68 articles (38 case series and 30 cohort studies) were included in the meta-analysis. Of the 31,953 SARS-CoV-2 patients included in the meta-analysis, the overall pooled proportion who had a laboratory-confirmed bacterial infection was 15.9% (95% CI 13.6–18.2, n = 1940, 49 studies, I2 = 99%, p < 0.00001), while 3.7% (95% CI 2.6–4.8, n = 177, 16 studies, I2 = 93%, p < 0.00001) had fungal infections and 6.6% (95% CI 5.5–7.6, n = 737, 44 studies, I2 = 96%, p < 0.00001) had other respiratory viruses. SARS-CoV-2 patients in the ICU had higher co-infections compared to ICU and non-ICU patients as follows: bacterial (22.2%, 95% CI 16.1–28.4, I2 = 88% versus 14.8%, 95% CI 12.4–17.3, I2 = 99%), and fungal (9.6%, 95% CI 6.8–12.4, I2 = 74% versus 2.7%, 95% CI 0.0–3.8, I2 = 95%); however, there was an identical other respiratory viral co-infection proportion between all SARS-CoV-2 patients [(ICU and non-ICU) and the ICU only] (6.6%, 95% CI 0.0–11.3, I2 = 58% versus 6.6%, 95% CI 5.5–7.7, I2 = 96%). Funnel plots for possible publication bias for the pooled effect sizes of the prevalence of coinfections was asymmetrical on visual inspection, and Egger’s tests confirmed asymmetry (p values < 0.05). Conclusion: Bacterial co-infection is relatively high in hospitalized patients with SARS-CoV-2, with little evidence of S. aureus playing a major role. Knowledge of the prevalence and type of co-infections in SARS-CoV-2 patients may have diagnostic and management implications.
  • Loading...
    Thumbnail Image
    Item
    Early innate and adaptive immune perturbations determine long-term severity of chronic virus and Mycobacterium tuberculosis coinfection
    (Elsevier, 2021) Xu, Wenxi; Snell, Laura M.; Guo, Mengdi; Boukhaled, Giselle; Macleod, Bethany L.; Li, Ming; Tullius, Michael V.; Guidos, Cynthia J.; Tsao, Ming-Sound; Divangahi, Maziar; Horwitz, Marcus A.; Liu, Jun; Brooks, David G.; Microbiology and Immunology, School of Medicine
    Chronic viral infections increase severity of Mycobacterium tuberculosis (Mtb) coinfection. Here, we examined how chronic viral infections alter the pulmonary microenvironment to foster coinfection and worsen disease severity. We developed a coordinated system of chronic virus and Mtb infection that induced central clinical manifestations of coinfection, including increased Mtb burden, extra-pulmonary dissemination, and heightened mortality. These disease states were not due to chronic virus-induced immunosuppression or exhaustion; rather, increased amounts of the cytokine TNFα initially arrested pulmonary Mtb growth, impeding dendritic cell mediated antigen transportation to the lymph node and subverting immune-surveillance, allowing bacterial sanctuary. The cryptic Mtb replication delayed CD4 T cell priming, redirecting T helper (Th) 1 toward Th17 differentiation and increasing pulmonary neutrophilia, which diminished long-term survival. Temporally restoring CD4 T cell induction overcame these diverse disease sequelae to enhance Mtb control. Thus, Mtb co-opts TNFα from the chronic inflammatory environment to subvert immune-surveillance, avert early immune function, and foster long-term coinfection.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University