- Browse by Subject
Browsing by Subject "Cognitive impairments"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Association Between Age and Cognitive Severity in Early‐Onset AD: Extension of preliminary findings in the Longitudinal Early‐Onset Alzheimer’s Disease Study (LEADS)(Wiley, 2025-01-03) Hammers, Dustin B.; Eloyan, Ani; Taurone, Alexander; Thangarajah, Maryanne; Kirby, Kala; Wong, Bonnie; Dage, Jeffrey L.; Nudelman, Kelly N.; Carrillo, Maria C.; Rabinovici, Gil D.; Dickerson, Bradford C.; Apostolova, Liana G.; LEADS Consortium; Neurology, School of MedicineBackground: Widespread cognitive impairments have previously been documented in Early‐Onset Alzheimer’s Disease (EOAD) relative to cognitively normal (CN) same‐aged peers or those with cognitive impairment without amyloid pathology (Early‐Onset non‐Alzheimer’s Disease; EOnonAD; Hammers et al., 2023). Prior preliminary work has similarly observed worse cognitive performance being associated with earlier ages in EOAD participants enrolled in the Longitudinal Early‐Onset Alzheimer’s Disease Study (LEADS; Apostolova et al., 2019). It is unclear, however, if these age effects are seen across early‐onset conditions, and whether cognitive discrepancies among diagnostic groups are uniform across the age spectrum. The objective of the current study is to more‐extensively examine the impact of age‐at‐baseline on cognition within LEADS, with emphasis placed on the influence of diagnostic group on these associations. Method: Expanded cross‐sectional baseline cognitive data from 573 participants (CN, n = 97; EOAD, n = 364; EOnonAD, n = 112) enrolled in the LEADS study (aged 40‐64) were analyzed. Multiple linear regression analyses were conducted to investigate associations between age‐at‐baseline and cognition for each diagnostic group – and their interaction among diagnoses – controlling for gender, education, APOE ε4 status, and disease severity. Result: See Table 1 for demographic characteristics of our sample. Linear regression showed a significant interaction effect for the cognitive domain of Executive Functioning (p = .002). Specifically, while the EOAD group displayed a positive relationship between age‐at‐baseline and Executive Functioning performance (β = 0.08, p = .02; Figure 1), the CN group displayed a negative relationship (β = ‐0.04, p = .008) and the EOnonAD group displayed no relationship (β = ‐0.01, p = .50). A similar main‐effect for age was observed for the EOAD group when examining Visuospatial Skills (β = 0.12, p = .04), however no other age effects were evident across other diagnostic groups or cognitive domains (Episodic Memory, Language, or Speed/Attention; Table 2). Conclusion: Building off preliminary work, our results suggest that executive functioning may be disproportionately impacted earlier in the disease course in participants with EOAD relative to other diagnostic groups. This finding appears to be unique to executive functioning, as it was absent in other cognitive domains and remained after accounting for disease severity. This highlights the need for further investigation into executive dysfunction early in the course of EOAD.Item Characterization of Language Profiles in Cognitively‐Defined Subgroups of Alzheimer’s Disease(Wiley, 2025-01-03) Gallée, Jeanne; Gibbons, Laura E.; Mukherjee, Shubhabrata; Scollard, Phoebe; Choi, Seo-Eun; James, Bryan D.; Klinedinst, Brandon S.; Lee, Michael L.; Mez, Jesse; Trittschuh, Emily H.; Saykin, Andrew J.; Crane, Paul K.; Medical and Molecular Genetics, School of MedicineBackground: The relationship between Alzheimer’s disease (AD) pathology and the associated clinical syndrome a patient presents with remains indeterminate. Cognitively‐defined subgroups of AD have revealed distinctions based on relative cognitive impairments, including AD‐Language, where challenges in language are substantial, and AD‐No Domain, where no relative asymmetries across cognitive domains occur. Pathological features of AD have been associated as the primary neuropathology of the logopenic variant of primary progressive aphasia (lvPPA). Hallmark clinical features of lvPPA include relatively spared comprehension in the face of decline in naming and repetition abilities. This work aimed to test the hypothesis that the lvPPA language profile was overrepresented in AD‐Language when compared to AD‐No Domain. Method: Measures of verbal comprehension, confrontation naming, and phrase‐level repetition were obtained from all participants from the Religious Orders Study (ROS), the RUSH Memory and Aging Project (MAP) and the Minority Aging Research Study (MARS) using confirmatory factor analyses. We subsetted the data to include participants belonging to the AD‐Language and AD‐No Domain groups at their initial AD diagnosis visit. We compared patterns of language profiles based on strengths and weaknesses in comprehension, naming, and repetition. Pearson’s Chi‐squared tests with Yates continuity correction was used to test if the language patterns were statistically different between the two AD subgroups. Results: We analyzed language performance in 642 participants across AD‐Language (31.8%) and AD‐No Domain (68.2%) groups (Table 1). Thresholds were based on AD‐No Domain and set as the median for each subdomain (comprehension = ‐.101, naming = ‐.957, repetition = .233) to establish whether a score represented a relative strength or weakness in the language profile. Eight patterns of language profiles based on strengths and weaknesses in comprehension, naming, and repetition were formed (Figure 1). The distribution of language patterns differed significantly between AD‐Language and AD‐No Domain (χ2 = 97.6, p <.001). Furthermore, the lvPPA pattern was found more frequently in AD‐Language (χ2 = 28.1, p <.001). Conclusion: Heterogeneity within the AD‐Language spectrum includes a significant proportion that is consistent with the language profile of lvPPA. Relative performance in domains of verbal comprehension, confrontation naming, and phrase‐level repetition varied by AD subgroup.Item Cognitive Function and its Relationship with Brain Structure in Myotonic Dystrophy Type 1(Wiley, 2021) Langbehn, Kathleen E.; van der Plas, Ellen; Moser, David J.; Long, Jeffrey D.; Gutmann, Laurie; Nopoulos, Peg; Neurology, School of MedicineStudies have shown relationships between white matter abnormalities and cognitive dysfunction in myotonic dystrophy type 1 (DM1), but comprehensive analysis of potential structure-function relationships are lacking. Fifty adult-onset DM1 individuals (33 female) and 68 unaffected adults (45 female) completed the Wechsler Adult Intelligence Scale-IV (WAIS-IV) to determine the levels and patterns of intellectual functioning. Neuroimages were acquired with a 3T scanner and were processed with BrainsTools. Regional brain volumes (regions of interest, ROIs) were adjusted for inter-scanner variation and intracranial volume. Linear regression models were conducted to assess if group by ROI interaction terms significantly predicted WAIS-IV composite scores. Models were adjusted for age and sex. The DM1 group had lower Perceptual Reasoning Index (PRI), Working Memory Index (WMI), and Processing Speed Index (PSI) scores than the unaffected group (PRI t(113) = -3.28, p = 0.0014; WMI t(114) = -3.49, p = 0.0007; PSI t(114) = -2.98, p = 0.0035). The group by hippocampus interaction term was significant for both PRI and PSI (PRI (t(111) = -2.82, p = 0.0057; PSI (t(112) = -2.87, p = 0.0049)). There was an inverse association between hippocampal volume and both PRI and PSI in the DM1 group (the higher the volume, the lower the intelligence quotient scores), but no such association was observed in the unaffected group. Enlarged hippocampal volume may underlie some aspects of cognitive dysfunction in adult-onset DM1, suggesting that increased volume of the hippocampus may be pathological.