- Browse by Subject
Browsing by Subject "Cloud Computing"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Plant Level IIoT Based Energy Management Framework(2023-05) Koshy, Liya Elizabeth; Chien, Stanley Yung-Ping; Chen, Jie; King, BrianThe Energy Monitoring Framework, designed and developed by IAC, IUPUI, aims to provide a cloud-based solution that combines business analytics with sensors for real-time energy management at the plant level using wireless sensor network technology. The project provides a platform where users can analyze the functioning of a plant using sensor data. The data would also help users to explore the energy usage trends and identify any energy leaks due to malfunctions or other environmental factors in their plant. Additionally, the users could check the machinery status in their plant and have the capability to control the equipment remotely. The main objectives of the project include the following: • Set up a wireless network using sensors and smart implants with a base station/ controller. • Deploy and connect the smart implants and sensors with the equipment in the plant that needs to be analyzed or controlled to improve their energy efficiency. • Set up a generalized interface to collect and process the sensor data values and store the data in a database. • Design and develop a generic database compatible with various companies irrespective of the type and size. • Design and develop a web application with a generalized structure. Hence the database can be deployed at multiple companies with minimum customization. The web app should provide the users with a platform to interact with the data to analyze the sensor data and initiate commands to control the equipment. The General Structure of the project constitutes the following components: • A wireless sensor network with a base station. • An Edge PC, that interfaces with the sensor network to collect the sensor data and sends it out to the cloud server. The system also interfaces with the sensor network to send out command signals to control the switches/ actuators. • A cloud that hosts a database and an API to collect and store information. • A web application hosted in the cloud to provide an interactive platform for users to analyze the data. The project was demonstrated in: • Lecture Hall (https://iac-lecture-hall.engr.iupui.edu/LectureHallFlask/). • Test Bed (https://iac-testbed.engr.iupui.edu/testbedflask/). • A company in Indiana. The above examples used sensors such as current sensors, temperature sensors, carbon dioxide sensors, and pressure sensors to set up the sensor network. The equipment was controlled using compactable switch nodes with the chosen sensor network protocol. The energy consumption details of each piece of equipment were measured over a few days. The data was validated, and the system worked as expected and helped the user to monitor, analyze and control the connected equipment remotely.Item Privacy Protection and Mobility Enhancement in Internet(2019-05) Zhang, Ping; Durresi, Arjan; Zou, Xukai; Raje, Rajeev R.; Liang, YaoThe Internet has substantially embraced mobility since last decade. Cellular data network carries majority of Internet mobile access traffic and become the de facto solution of accessing Internet in mobile fashion, while many clean-slate Internet mobility solutions were proposed but none of them has been largely deployed. Internet mobile users increasingly concern more about their privacy as both researches and real-world incidents show leaking of communication and location privacy could lead to serious consequences. Just the communication itself between mobile user and their peer users or websites could leak considerable privacy of mobile user, such as location history, to other parties. Additionally, comparing to ordinary Internet access, connecting through cellular network yet provides equivalent connection stability or longevity. In this research we proposed a novelty paradigm that leverages concurrent far-side proxies to maximize network location privacy protection and minimize interruption and performance penalty brought by mobility.To avoid the deployment feasibility hurdle we also investigated the root causes impeding popularity of existing Internet mobility proposals and proposed guidelines on how to create an economical feasible solution for this goal. Based on these findings we designed a mobility support system offered as a value-added service by mobility service providers and built on elastic infrastructure that leverages various cloud aided designs, to satisfy economic feasibility and explore the architectural trade-offs among service QoS, economic viability, security and privacy.Item TOWARDS MANY-CORE PROCESSOR SIMULATION ON CLOUD COMPUTING PLATFORMS(2011-08-23) Schmidt, James Michael; Lee, Jaehwan (John); King, Brian; Tuceryan, MihranGrowth of interest and need for many-core systems have steadily increased over the recent years. Industry trends lead many-core systems to become increasingly larger and more complex. Because of these realities it is important to researchers, academia, and industry that the design of these many-core systems be straightforward and comprehensive. There is a need for a many-core simulator that can be simple to use and learn from for students, dynamic and capable of emulating large systems for researchers, and flexible with fast turnover for industry designers. At the same time, as many-core systems have been becoming popular and complex, and hence their design, the long standing field of Cloud Computing has become more prevalent and feasible to use. Such cloud computing platforms as Windows Azure allow for the easy access and use of resources that in the past were simply not available to ordinary users. Large tasks can be performed in SaaS Cloud Computing models and be accessible from a small, lightweight device using nothing more than a web browser. As a solution to the needs for designing future many-core systems, we present a Many-Core Simulator on Azure Cloud Computing Platform called M3C Simulator. This is targeted at teaching, research, and industry and as such needs to be easy to use, flexible, and powerful. The Could Computing service model meets all these needs. This thesis discusses overall design of the M3C Simulator and how it leverages Cloud Computing resources, the simple-to-use and understand Interface layout, and the software design including program flow and dynamic compilation.