- Browse by Subject
Browsing by Subject "Cloud"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Multilingual Cyberbullying Detection System(2019-05) Pawar, Rohit S.; Raje, Rajeev R.; Tuceryan, Mihran; Durresi, ArjanSince the use of social media has evolved, the ability of its users to bully others has increased. One of the prevalent forms of bullying is Cyberbullying, which occurs on the social media sites such as Facebook©, WhatsApp©, and Twitter©. The past decade has witnessed a growth in cyberbullying – is a form of bullying that occurs virtually by the use of electronic devices, such as messaging, e-mail, online gaming, social media, or through images or mails sent to a mobile. This bullying is not only limited to English language and occurs in other languages. Hence, it is of the utmost importance to detect cyberbullying in multiple languages. Since current approaches to identify cyberbullying are mostly focused on English language texts, this thesis proposes a new approach (called Multilingual Cyberbullying Detection System) for the detection of cyberbullying in multiple languages (English, Hindi, and Marathi). It uses two techniques, namely, Machine Learning-based and Lexicon-based, to classify the input data as bullying or non-bullying. The aim of this research is to not only detect cyberbullying but also provide a distributed infrastructure to detect bullying. We have developed multiple prototypes (standalone, collaborative, and cloud-based) and carried out experiments with them to detect cyberbullying on different datasets from multiple languages. The outcomes of our experiments show that the machine-learning model outperforms the lexicon-based model in all the languages. In addition, the results of our experiments show that collaboration techniques can help to improve the accuracy of a poor-performing node in the system. Finally, we show that the cloud-based configurations performed better than the local configurations.Item A Smart and Interactive Edge-Cloud Big Data System(2021-08) Stauffer, Jake; Zhang, Qingxue; King, Brian; Fang, ShiaofenData and information have increased exponentially in recent years. The promising era of big data is advancing many new practices. One of the emerging big data applications is healthcare. Large quantities of data with varying complexities have been leading to a great need in smart and secure big data systems. Mobile edge, more specifically the smart phone, is a natural source of big data and is ubiquitous in our daily lives. Smartphones offer a variety of sensors, which make them a very valuable source of data that can be used for analysis. Since this data is coming directly from personal phones, that means the generated data is sensitive and must be handled in a smart and secure way. In addition to generating data, it is also important to interact with the big data. Therefore, it is critical to create edge systems that enable users to access their data and ensure that these applications are smart and secure. As the first major contribution of this thesis, we have implemented a mobile edge system, called s2Edge. This edge system leverages Amazon Web Service (AWS) security features and is backed by an AWS cloud system. The implemented mobile application securely logs in, signs up, and signs out users, as well as connects users to the vast amounts of data they generate. With a high interactive capability, the system allows users (like patients) to retrieve and view their data and records, as well as communicate with the cloud users (like physicians). The resulting mobile edge system is promising and is expected to demonstrate the potential of smart and secure big data interaction. The smart and secure transmission and management of the big data on the cloud is essential for healthcare big data, including both patient information and patient measurements. The second major contribution of this thesis is to demonstrate a novel big data cloud system, s2Cloud, which can help enhance healthcare systems to better monitor patients and give doctors critical insights into their patients' health. s2Cloud achieves big data security through secure sign up and log in for the doctors, as well as data transmission protection. The system allows the doctors to manage both patients and their records effectively. The doctors can add and edit the patient and record information through the interactive website. Furthermore, the system supports both real-time and historical modes for big data management. Therefore, the patient measurement information can, not only be visualized and demonstrated in real-time, but also be retrieved for further analysis. The smart website also allows doctors and patients to interact with each other effectively through instantaneous chat. Overall, the proposed s2Cloud system, empowered by smart secure design innovations, has demonstrated the feasibility and potential for healthcare big data applications. This study will further broadly benefit and advance other smart home and world big data applications.