ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Classification Trees"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Differentiating Between Walking and Stair Climbing Using Raw Accelerometry Data
    (Springer, 2019-05-10) Fadel, William F.; Urbanek, Jacek K.; Albertson, Steven R.; Li, Xiaochun; Chomistek, Andrea K.; Harezlak, Jaroslaw; Biostatistics, School of Public Health
    Wearable accelerometers provide an objective measure of human physical activity. They record high frequency unlabeled three-dimensional time series data. We extract meaningful features from the raw accelerometry data and based on them develop and evaluate a classification method for the detection of walking and its sub-classes, i.e. level walking, descending stairs and ascending stairs. Our methodology is tested on a sample of 32 middle-aged subjects for whom we extracted features based on the Fourier and wavelet transforms. We build subject-specific and group-level classification models utilizing a tree-based methodology. We evaluate the effects of sensor location and tuning parameters on the classification accuracy of the tree models. In the group-level classification setting, we propose a robust feature inter-subject normalization and evaluate its performance compared to unnormalized data. The overall classification accuracy for the three activities at the subject-specific level was on average 87.6%, with the ankle-worn accelerometers showing the best performance with an average accuracy 90.5%. At the group-level, the average overall classification accuracy for the three activities using the normalized features was 80.2% compared to 72.3% for the unnormalized features. In summary, a framework is provided for better use and feature extraction from raw accelerometry data to differentiate among different walking modalities as well as considerations for study design.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University