- Browse by Subject
Browsing by Subject "Citizen science"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Addressing Pollution-Related Global Environmental Health Burdens(AGU, 2018-02-19) Filippelli, Gabriel M.; Taylor, Mark P.; Earth Sciences, School of ScienceNew analyses are revealing the scale of pollution on global health, with a disproportionate share of the impact borne by lower‐income nations, minority and marginalized individuals. Common themes emerge on the drivers of this pollution impact, including a lack of regulation and its enforcement, research and expertise development, and innovative funding mechanisms for mitigation. Creative approaches need to be developed and applied to address and overcome these obstacles. The existing “business as usual” modus operandi continues to externalize human health costs related to pollution, which exerts a negative influence on global environmental health.Item Exploring the Interior Exposome Using Citizen Science: Initial Results From the New DustSafe Initiative(Authorea, 2022-11-24) Filippelli, Gabriel; Taylor, Mark; Entwistle, Jane; Frix, Emeline; Earth and Environmental Sciences, School of ScienceStudies of interior air exposures to various human and non-human components has largely been restricted to industrial exposures for the purpose of regulation. In contrast, little attention has been paid to exposure at the residential scale, where people spend much of their day and may be exposed to particulate sources ranging from known toxins, such as lead, arsenic, and asbestos, to human-produced chemicals of yet unknown toxicity, such as flame retardants. To capitalize on experience with citizen science initiatives as they pertain to environmental health, researchers formed an international network called 360 Dust Analysis, which provides guidance on citizen science and interior dust collection, as well as research tools to examine dust through analysis in regional labs. We present initial results from the July 2018 launch of this program in the USA, called DustSafe USA and operated under approved human subjects protocols by Indiana University (http://www.urbanhealth.iupui.edu/). We launched via multiple media strategies, including an extended television news segment, an article in several Indiana newspapers, appearances in several statewide radio shows, and via a widely distributed press release. As of this abstract submission, well over 300 queries were received, and after only two weeks of the launch the lab has received nearly 100 dust samples. Participants are largely from central Indiana where most of the media play occurred, but samples have also come from all over the country. We will present geochemical and compositional results from the dust analysis, but perhaps more importantly we will discuss how citizens were engaged, how the funding model for such efforts might be developed, and the general approach to research translation and citizen science.Item New Approaches to Identifying and Reducing the Global Burden of Disease From Pollution(Wiley, 2020-03-25) Filippelli, Gabriel; Anenberg, Susan; Taylor, Mark; van Green, Alexander; Khreis, Haneen; Earth Sciences, School of SciencePollution from multiple sources causes significant disease and death worldwide. Some sources are legacy, such as heavy metals accumulated in soils, and some are current, such as particulate matter. Because the global burden of disease from pollution is so high, it is important to identify legacy and current sources and to develop and implement effective techniques to reduce human exposure. But many limitations exist in our understanding of the distribution and transport processes of pollutants themselves, as well as the complicated overprint of human behavior and susceptibility. New approaches are being developed to identify and eliminate pollution in multiple environments. Community-scale detection of geogenic arsenic and fluoride in Bangladesh is helping to map the distribution of these harmful elements in drinking water. Biosensors such as bees and their honey are being used to measure heavy metal contamination in cities such as Vancouver and Sydney. Drone-based remote sensors are being used to map metal hot spots in soils from former mining regions in Zambia and Mozambique. The explosion of low-cost air monitors has allowed researchers to build dense air quality sensing networks to capture ephemeral and local releases of harmful materials, building on other developments in personal exposure sensing. And citizen science is helping communities without adequate resources measure their own environments and in this way gain agency in controlling local pollution exposure sources and/or alerting authorities to environmental hazards. The future of GeoHealth will depend on building on these developments and others to protect a growing population from multiple pollution exposure risks.