ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Circulating cell-free DNA"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    A plasma telomeric cell-free DNA level in unaffected women with BRCA1 or/and BRCA2 mutations: a pilot study
    (Impact Journals, 2017-12-29) Dey, Shatovisha; Marino, Natascia; Bishop, Kanokwan; Dahlgren, Paige N.; Shendre, Aditi; Storniolo, Anna Maria; He, Chunyan; Tanaka, Hiromi; Medical and Molecular Genetics, School of Medicine
    Plasma cell-free DNA (cfDNA) is a small DNA fragment circulating in the bloodstream originating from both non-tumor- and tumor-derived cells. A previous study showed that a plasma telomeric cfDNA level decreases in sporadic breast cancer patients compared to controls. Tumor suppressor gene products including BRCA1 and BRCA2 (BRCA1&2) play an important role in telomere maintenance. In this study, we hypothesized that the plasma telomeric cfDNA level is associated with the mutation status of BRCA1&2 genes. To test this hypothesis, we performed plasma telomeric cfDNA quantitative PCR (qPCR)-based assays to compare 28 women carriers of the BRCA1&2 mutation with age-matched controls of 28 healthy women. The results showed that the plasma telomeric cfDNA level was lower in unaffected BRCA1&2 mutation carriers than in age-matched controls from non-obese women (BMI < 30), while there was no association between unaffected BRCA1&2 mutation carriers and age-matched controls in obese women (BMI > 30). Moreover, the plasma telomeric cfDNA level applied aptly to the Tyrer-Cuzick model in non-obese women. These findings suggest that circulating cfDNA may detect dysfunctional telomeres derived from cells with BRCA1&2 mutations and, therefore, its level is associated with breast cancer susceptibility. This pilot study warrants further investigation to elucidate the implication of plasma telomeric cfDNA levels in relation to cancer and obesity.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University