- Browse by Subject
Browsing by Subject "Chronic wound"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Activation of a Src-JNK pathway in unscheduled endocycling cells of the Drosophila wing disc induces a chronic wounding response(bioRxiv, 2025-03-13) Huang, Yi-Ting; Calvi, Brian R.; Medicine, School of MedicineThe endocycle is a specialized cell cycle during which cells undergo repeated G / S phases to replicate DNA without division, leading to large polyploid cells. The transition from a mitotic cycle to an endocycle can be triggered by various stresses, which results in unscheduled, or induced endocycling cells (iECs). While iECs can be beneficial for wound healing, they can also be detrimental by impairing tissue growth or promoting cancer. However, the regulation of endocycling and its role in tissue growth remain poorly understood. Using the Drosophila wing disc as a model, we previously demonstrated that iEC growth is arrested through a Jun N-Terminal Kinase (JNK)-dependent, reversible senescence-like response. However, it remains unclear how JNK is activated in iECs and how iECs impact overall tissue structure. In this study, we performed a genetic screen and identified the Src42A-Shark-Slpr pathway as an upstream regulator of JNK in iECs, leading to their senescence-like arrest. We found that tissues recognize iECs as wounds, releasing wound-related signals that induce a JNK-dependent developmental delay. Similar to wound closure, this response triggers Src-JNK-mediated actomyosin remodeling, yet iECs persist rather than being eliminated. Our findings suggest that the tissue response to iECs shares key signaling and cytoskeletal regulatory mechanisms with wound healing and dorsal closure, a developmental process during Drosophila embryogenesis. However, because iECs are retained within the tissue, they create a unique system that may serve as a model for studying chronic wounds and tumor progression.Item Disposable Patterned Electroceutical Dressing (PED-10) Is Safe for Treatment of Open Clinical Chronic Wounds(Mary Ann Liebert, 2019-04-01) Roy, Sashwati; Prakash, Shaurya; Mathew-Steiner, Shomita S.; Das Ghatak, Piya; Lochab, Varun; Jones, Travis H.; Mohana Sundaram, Prashanth; Gordillo, Gayle M.; Subramaniam, Vish V.; Sen, Chandan K.; Surgery, School of MedicineObjective: To evaluate if patterned electroceutical dressing (PED) is safe for human chronic wounds treatment as reported by wound care providers. Approach: This work reports a pilot feasibility study with the primary objective to determine physically observable effects of PED application on host tissue response from a safety evaluation point of view. For this pilot study, patients receiving a lower extremity amputation with at least one open wound on the part to be amputated were enrolled. Patients were identified through the Ohio State University Wexner Medical Center (OSUWMC) based on inclusion and exclusion criteria through prescreening through the Comprehensive Wound Center's (CWC) Limb Preservation Program and wound physicians and/or providers at OSUWMC. Wounds were treated with the PED before amputation surgery. Results: The intent of the study was to identify if PED was safe for clinical application based on visual observations of adverse or lack of adverse events on skin and wound tissue. The pilot testing performed on a small cohort (N = 8) of patients showed that with engineered voltage regulation of current flow to the open wound, the PED can be used with little to no visually observable adverse effects on chronic human skin wounds. Innovation: The PED was developed as a second-generation tunable electroceutical wound care dressing, which could potentially be used to treat wounds with deeper infections compared with current state of the art that treats wounds with treatment zone limited to the surface near topical application. Conclusion: Technology advances in design and fabrication of electroceutical dressings were leveraged to develop a tunable laboratory prototype that could be used as a disposable low-cost electroceutical wound care dressing on chronic wounds. Design revisions of PED-1 (1 kΩ ballast resistor) circumvented previously observed adverse effects on the skin in the vicinity of an open wound. PED-10 (including a 10 kΩ ballast resistor) was well tolerated in the small cohort of patients (N = 8) on whom it was tested, and the observations reported here warrant a larger study to determine the clinical impact on human wound healing and infection control.Item Electrochemical Devices in Cutaneous Wound Healing(MDPI, 2023-06-11) Evans, J. Parker; Sen, Chandan K.; Surgery, School of MedicineIn healthy skin, vectorial ion transport gives rise to a transepithelial potential which directly impacts many physiological aspects of skin function. A wound is a physical defect that breaches the epithelial barrier and changes the electrochemical environment of skin. Electroceutical dressings are devices that manipulate the electrochemical environment, host as well as microbial, of a wound. In this review, electroceuticals are organized into three mechanistic classes: ionic, wireless, and battery powered. All three classes of electroceutical dressing show encouraging effects on infection management and wound healing with evidence of favorable impact on keratinocyte migration and disruption of wound biofilm infection. This foundation sets the stage for further mechanistic as well as interventional studies. Successful conduct of such studies will determine the best dosage, timing, and class of stimulus necessary to maximize therapeutic efficacy.