- Browse by Subject
Browsing by Subject "Cholesterol"
Now showing 1 - 10 of 46
Results Per Page
Sort Options
Item An early, reversible cholesterolgenic etiology of diet-induced insulin resistance(Elsevier, 2023) Covert, Jacob D.; Grice, Brian A.; Thornburg, Matthew G.; Kaur, Manpreet; Ryan, Andrew P.; Tackett, Lixuan; Bhamidipati, Theja; Stull, Natalie D.; Kim, Teayoun; Habegger, Kirk M.; McClain, Donald A.; Brozinick, Joseph T.; Elmendorf, Jeffrey S.; Anatomy, Cell Biology and Physiology, School of MedicineObjective: A buildup of skeletal muscle plasma membrane (PM) cholesterol content in mice occurs within 1 week of a Western-style high-fat diet and causes insulin resistance. The mechanism driving this cholesterol accumulation and insulin resistance is not known. Promising cell data implicate that the hexosamine biosynthesis pathway (HBP) triggers a cholesterolgenic response via increasing the transcriptional activity of Sp1. In this study we aimed to determine whether increased HBP/Sp1 activity represented a preventable cause of insulin resistance. Methods: C57BL/6NJ mice were fed either a low-fat (LF, 10% kcal) or high-fat (HF, 45% kcal) diet for 1 week. During this 1-week diet the mice were treated daily with either saline or mithramycin-A (MTM), a specific Sp1/DNA-binding inhibitor. A series of metabolic and tissue analyses were then performed on these mice, as well as on mice with targeted skeletal muscle overexpression of the rate-limiting HBP enzyme glutamine-fructose-6-phosphate-amidotransferase (GFAT) that were maintained on a regular chow diet. Results: Saline-treated mice fed this HF diet for 1 week did not have an increase in adiposity, lean mass, or body mass while displaying early insulin resistance. Consistent with an HBP/Sp1 cholesterolgenic response, Sp1 displayed increased O-GlcNAcylation and binding to the HMGCR promoter that increased HMGCR expression in skeletal muscle from saline-treated HF-fed mice. Skeletal muscle from these saline-treated HF-fed mice also showed a resultant elevation of PM cholesterol with an accompanying loss of cortical filamentous actin (F-actin) that is essential for insulin-stimulated glucose transport. Treating these mice daily with MTM during the 1-week HF diet fully prevented the diet-induced Sp1 cholesterolgenic response, loss of cortical F-actin, and development of insulin resistance. Similarly, increases in HMGCR expression and cholesterol were measured in muscle from GFAT transgenic mice compared to age- and weight-match wildtype littermate control mice. In the GFAT Tg mice we found that these increases were alleviated by MTM. Conclusions: These data identify increased HBP/Sp1 activity as an early mechanism of diet-induced insulin resistance. Therapies targeting this mechanism may decelerate T2D development.Item Aster proteins mediate carotenoid transport in mammalian cells(National Academy of Science, 2022) Bandara, Sepalika; Ramkumar, Srinivasagan; Imanishi, Sanae; Thomas, Linda D.; Sawant, Onkar B.; Imanishi, Yoshikazu; von Lintig, Johannes; Ophthalmology, School of MedicineSome mammalian tissues uniquely concentrate carotenoids, but the underlying biochemical mechanism for this accumulation has not been fully elucidated. For instance, the central retina of the primate eyes displays high levels of the carotenoids, lutein, and zeaxanthin, whereas the pigments are largely absent in rodent retinas. We previously identified the scavenger receptor class B type 1 and the enzyme β-carotene-oxygenase-2 (BCO2) as key components that determine carotenoid concentration in tissues. We now provide evidence that Aster (GRAM-domain-containing) proteins, recently recognized for their role in nonvesicular cholesterol transport, engage in carotenoid metabolism. Our analyses revealed that the StART-like lipid binding domain of Aster proteins can accommodate the bulky pigments and bind them with high affinity. We further showed that carotenoids and cholesterol compete for the same binding site. We established a bacterial test system to demonstrate that the StART-like domains of mouse and human Aster proteins can extract carotenoids from biological membranes. Mice deficient for the carotenoid catabolizing enzyme BCO2 concentrated carotenoids in Aster-B protein-expressing tissues such as the adrenal glands. Remarkably, Aster-B was expressed in the human but not in the mouse retina. Within the retina, Aster-B and BCO2 showed opposite expression patterns in central versus peripheral parts. Together, our study unravels the biochemical basis for intracellular carotenoid transport and implicates Aster-B in the pathway for macula pigment concentration in the human retina.Item Atorvastatin rescues hyperhomocysteinemia-induced cognitive deficits and neuroinflammatory gene changes(BMC, 2023-09-01) Weekman, Erica M.; Johnson, Sherika N.; Rogers, Colin B.; Sudduth, Tiffany L.; Xie, Kevin; Qiao, Qi; Fardo, David W.; Bottiglieri, Teodoro; Wilcock, Donna M.; Neurology, School of MedicineBackground: Epidemiological data suggests statins could reduce the risk of dementia, and more specifically, Alzheimer's disease (AD). Pre-clinical data suggests statins reduce the risk of dementia through their pleiotropic effects rather than their cholesterol lowering effects. While AD is a leading cause of dementia, it is frequently found co-morbidly with cerebral small vessel disease and other vascular contributions to cognitive impairment and dementia (VCID), which are another leading cause of dementia. In this study, we determined if atorvastatin ameliorated hyperhomocysteinemia (HHcy)-induced VCID. Methods: Wild-type (C57Bl6/J) mice were placed on a diet to induce HHcy or a control diet each with or without atorvastatin for 14 weeks. Mice underwent novel object recognition testing before tissue collection. Plasma total cholesterol and total homocysteine as well as related metabolites were measured. Using qPCR and NanoString technology, we profiled glial cell-associated gene expression changes. Finally, microglial morphology, astrocyte end feet, and microhemorrhages were analyzed using histological methods. Results: Atorvastatin treatment of HHcy in mice led to no changes in total cholesterol but decreases in total homocysteine in plasma. While HHcy decreased expression of many glial genes, atorvastatin rescued these gene changes, which mostly occurred in oligodendrocytes and microglia. Microglia in HHcy mice with atorvastatin were trending towards fewer processes compared to control with atorvastatin, but there were no atorvastatin effects on astrocyte end feet. While atorvastatin treatment was trending towards increasing the area of microhemorrhages in HHcy mice in the frontal cortex, it only slightly (non-significantly) reduced the number of microhemorrhages. Finally, atorvastatin treatment in HHcy mice led to improved cognition on the novel object recognition task. Conclusions: These data suggest that atorvastatin rescued cognitive changes induced by HHcy most likely through lowering plasma total homocysteine and rescuing gene expression changes rather than impacts on vascular integrity or microglial changes.Item Biophysical studies of cholesterol in unsaturated phospholipid model membranes(2013) Williams, Justin A.; Wassall, Stephen R.; Decca, Ricardo; Petrache, Horia; Zhu, Fangqiang; Todd, Brian A.Cellular membranes contain a staggering diversity of lipids. The lipids are heterogeneously distr ibuted to create regions, or domains, whose physical properties differ from the bulk membrane and play an essential role in modulating the function of resident proteins. Many basic questions pertaining to the formation of these lateral assemblies remain. T his research employs model membranes of well - defined composition to focus on the potential role of polyunsaturated fatty acids (PUFAs) and their interaction with cholesterol (chol) in restructuring the membrane environment. Omega - 3 (n - 3) PUFAs are the main bioactive components of fish oil, whose consumption alleviates a variety of health problems by a molecular mechanism that is unclear. We hypothesize that the incorporation of PUFAs into membrane lipids and the effect they have on molecular organization may be, in part, responsible. Chol is a major constituent in the plasma membrane of mammals. It determines the arrangement and collective properties of neighboring lipids, driving the formation of domains via differential affinity for different lipids . T he m olecular organization of 1 -[ 2 H 31 ]palmitoyl -2- eicosapentaenoylphosphatidylcholine (PEPC - d 31 ) and 1 -[ 2 H 31 ]palmitoyl -2- docosahexaenoylphosphatidylcholine (PDPC -d 31 ) in membran es with sphingomyelin (SM) and chol (1:1:1 mol) was compared by solid - state 2 H NMR spectroscopy. Eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids are the two major n - 3 PUFAs found in fish oil, while PEPC -d 31 and PDPC -d 31 are phospholipids containing the respective PUFAs at the sn - 2 position and a perdeuterated palmitic acid a t the sn - 1 position . Analysis of s pectra recorded as a function of temperature indicate s that in both cases, formation of PUFA - rich (less ordered) and SM - rich (more ordered) domains occurred. A surprisingly substantial proportion of PUFA was found to infil trate the more ordered domain. There was almost twice as much DHA (65%) as EPA (30%) . The implication is that n - 3 PUFA s can incorporate into lipid rafts, which are domains enriched in SM and chol in the plasma membrane, and potentially disrupt the activity of signaling proteins that reside therein. DHA, furthermore, may be the more potent component of fish oil. PUFA - chol interactions were also examined through affinity measurements. A novel method utilizing electron paramagnetic resonance (EPR) was develope d, to monitor the partitioning of a spin - labeled analog of chol , 3β - doxyl - 5α - cholestane (chlstn), between large unilamellar vesicles (LUVs) and met hyl - β - cyclodextrin (mβCD). The EPR spectra for chlstn in the two environments are distinguishable due to the substantial differences in tumbling rates , allowing the population distribution ratio to be determined by spectral simulation. Advantages of this approach include speed of implementation and a vo idance of potential artifact s associated with physical separation of LUV and mβCD . Additionally, in a check of the method, t he relative partition coefficients between lipids measured for the spin label analog agree with values obtained for chol by isothermal titration calorimetry (ITC). Results from LUV with different composition confirmed a hierarchy of decreased sterol affinity for phospholipids with increasing acyl chain unsaturation , PDPC possessing half the affinity of the corresponding monounsaturated phospholipid. Taken together, the results of these studies on model membranes demonstrate the potential for PUFA - driven alteration of the architecture of biomembranes, a mechanism through which human health may be impacted.Item Cardiovascular risk assessment in the resource limited setting of Western Honduras: An epidemiological perspective(Elsevier, 2020-02-04) Montalvan Sanchez, Eleazar Enrique; Urrutia, Samuel Alejandro; Rodriguez, Aida Argentina; Duarte, Gabriela; Murillo, Axel; Rivera, Ricardo; Paredes Henriquez, Andrea Alejandra; Montalvan Sanchez, Daniela Maria; Ordoñez, Eva; Norwood, Dalton Argean; Dominguez, Lucia Belem; Dominguez, Ricardo Leonel; Torres, Karla; Reyes Fajardo, Esmelia Michell; Godoy, Carlos Amilcar; Medicine, School of MedicineCardiovascular Disease (CVD) epidemiology varies significantly among Low and Middle-Income Countries. Honduras is the Central American country with the highest Ischemic Heart Disease and CVD mortality rates. The aim of this study was to assess the individual CVD risk factors and calculate Cardiovascular Risk Assessment Scores (CVRAS) from the population. Methods: A cross-sectional study in western Honduras. Estimation of CV risk was performed using Framingham, MESA, ACC/AHA-PCEs and ESC SCORE calculators. Results: 38% were male. For men and women respectively; 49% and 48% had self-reported hypertension (HTN), on measured blood pressure only 18% and 30% had normal readings. Diabetes Mellitus was reported in 19% and 22%. Tobacco use was 14% and 3%. Self-reported regular exercise was 39.9% and 25%. Obesity was diagnosed in 24% and 24%. Lipid profile; total cholesterol was ≥200 mg/dl in 63% of subjects. LDL-C was elevated (>100 mg/dl) in 74% of participants, 9% had LDL-C levels higher than 190 mg/dl. Triglycerides were high (>160 mg/dl) in 60%, of these subjects 22% were taking lipid-lowering medications. 52% reported family-history of CVD. The risk calculation for men and women respectively for each CVRAS were; AHA/ACC-PCEs high risk (score ≥ 7.5%) in 62% and 30%, FRS high risk (score ≥ 20%) 46% and 15%, MESA high risk (Score ≥ 7.5%) in 70.6% and 17.7%, ESC SCORE high risk (score ≥ 5% in 32.4% and 11.8%). Conclusions: CV risk calculations revealed higher than rates than expected with consequently reflected on higher than estimated CVRAS. This represents the first report of its kind in Honduras.Item Changes in Cholesterol Level Alter Integrin Sequestration in Raft-Mimicking Lipid Mixtures(Elsevier, 2018-01-09) Ge, Yifan; Gao, Jiayun; Jordan, Rainer; Naumann, Christoph A.; Chemistry and Chemical Biology, School of ScienceThe influence of cholesterol (CHOL) level on integrin sequestration in raft-mimicking lipid mixtures forming coexisting liquid-ordered (lo) and liquid-disordered (ld) lipid domains is investigated using complementary, single-molecule-sensitive, confocal detection methods. Systematic analysis of membrane protein distribution in such a model membrane environment demonstrates that variation of CHOL level has a profound influence on lo-ld sequestration of integrins, thereby exhibiting overall ld preference in the absence of ligands and lo affinity upon vitronectin addition. Accompanying photon-counting histogram analysis of integrins in the different model membrane mixtures shows that the observed changes of integrin sequestration in response to variations of membrane CHOL level are not associated with altering integrin oligomerization states. Instead, our experiments suggest that the strong CHOL dependence of integrin sequestration can be attributed to CHOL-mediated changes of lipid packing and bilayer thickness in coexisting lo and ld domains, highlighting the significance of a biophysical mechanism of CHOL-mediated regulation of integrin sequestration. We envision that this model membrane study may help clarify the influence of CHOL in integrin functionality in plasma membranes, thus providing further insight into the role of lipid heterogeneities in membrane protein distribution and function in a cellular membrane environment.Item Cholesterol's role in the molecular architecture of polyunsaturated model membranes(2001) Brzustowicz, Michael R.Item Chromium Enhances Insulin Responsiveness via AMPK(Elsevier, 2014-05) Hoffman, Nolan J.; Penque, Brent A.; Habegger, Kirk M.; Sealls, Whitney; Tackett, Lixuan; Elmendorf, Jeffrey S.; Department of Cellular & Integrative Physiology, IU School of MedicineTrivalent chromium (Cr3+) is known to improve glucose homeostasis. Cr3+ has been shown to improve plasma membrane-based aspects of glucose transporter GLUT4 regulation and increase activity of the cellular energy sensor 5′ AMP-activated protein kinase (AMPK). However, the mechanism(s) by which Cr3+ improves insulin responsiveness and whether AMPK mediates this action is not known. In this study we tested if Cr3+ protected against physiological hyperinsulinemia-induced plasma membrane cholesterol accumulation, cortical filamentous actin (F-actin) loss and insulin resistance in L6 skeletal muscle myotubes. In addition, we performed mechanistic studies to test our hypothesis that AMPK mediates the effects of Cr3+ on GLUT4 and glucose transport regulation. Hyperinsulinemia-induced insulin-resistant L6 myotubes displayed excess membrane cholesterol and diminished cortical F-actin essential for effective glucose transport regulation. These membrane and cytoskeletal abnormalities were associated with defects in insulin-stimulated GLUT4 translocation and glucose transport. Supplementing the culture medium with pharmacologically relevant doses of Cr3+ in the picolinate form (CrPic) protected against membrane cholesterol accumulation, F-actin loss, GLUT4 dysregulation and glucose transport dysfunction. Insulin signaling was neither impaired by hyperinsulinemic conditions nor enhanced by CrPic, whereas CrPic increased AMPK signaling. Mechanistically, siRNA-mediated depletion of AMPK abolished the protective effects of CrPic against GLUT4 and glucose transport dysregulation. Together these findings suggest that the micronutrient Cr3+, via increasing AMPK activity, positively impacts skeletal muscle cell insulin sensitivity and glucose transport regulation.Item Coxiella burnetii Sterol-Modifying Protein Stmp1 Regulates Cholesterol in the Intracellular Niche(American Society for Microbiology, 2022) Clemente, Tatiana M.; Ratnayake, Rochelle; Samanta, Dhritiman; Augusto, Leonardo; Beare, Paul A.; Heinzen, Robert A.; Gilk, Stacey D.; Microbiology and Immunology, School of MedicineCoxiella burnetii replicates in a phagolysosome-like vacuole called the Coxiella-containing vacuole (CCV). While host cholesterol readily traffics to the CCV, cholesterol accumulation leads to CCV acidification and bacterial death. Thus, bacterial regulation of CCV cholesterol content is essential for Coxiella pathogenesis. Coxiella expresses a sterol-modifying protein, Stmp1, that may function to lower CCV cholesterol through enzymatic modification. Using an Stmp1 knockout (Δstmp1), we determined that Stmp1 is not essential for axenic growth. Inside host cells, however, Δstmp1 mutant bacteria form smaller CCVs which accumulate cholesterol, preferentially fuse with lysosomes, and become more acidic, correlating with a significant growth defect. However, in cholesterol-free cells, Δstmp1 mutant bacteria grow similarly to wild-type bacteria but are hypersensitive to cholesterol supplementation. To better understand the underlying mechanism behind the Δstmp1 mutant phenotype, we performed sterol profiling. Surprisingly, we found that Δstmp1 mutant-infected macrophages accumulated the potent cholesterol homeostasis regulator 25-hydroxycholesterol (25-HC). We next determined whether dysregulated 25-HC alters Coxiella infection by treating wild-type Coxiella-infected cells with 25-HC. Similar to the Δstmp1 mutant phenotype, 25-HC increased CCV proteolytic activity and inhibited bacterial growth. Collectively, these data indicate that Stmp1 alters host cholesterol metabolism and is essential to establish a mature CCV which supports Coxiella growth.