- Browse by Subject
Browsing by Subject "Chatbots"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item ChatGPT-4 and the Global Burden of Disease Study: Advancing Personalized Healthcare Through Artificial Intelligence in Clinical and Translational Medicine(Springer Nature, 2023-05-23) Temsah, Mohamad-Hani; Jamal, Amr; Aljamaan, Fadi; Al-Tawfiq, Jaffar A.; Al-Eyadhy, Ayman; Medicine, School of MedicineThe fusion of insights from the comprehensive global burden of disease (GBD) study and the advanced artificial intelligence of open artificial intelligence (AI) chat generative pre-trained transformer version 4 (ChatGPT-4) brings the potential to transform personalized healthcare planning. By integrating the data-driven findings of the GBD study with the powerful conversational capabilities of ChatGPT-4, healthcare professionals can devise customized healthcare plans that are adapted to patients' lifestyles and preferences. We propose that this innovative partnership can lead to the creation of a novel AI-assisted personalized disease burden (AI-PDB) assessment and planning tool. For the successful implementation of this unconventional technology, it is crucial to ensure continuous and accurate updates, expert supervision, and address potential biases and limitations. Healthcare professionals and stakeholders should have a balanced and dynamic approach, emphasizing interdisciplinary collaborations, data accuracy, transparency, ethical compliance, and ongoing training. By investing in the unique strengths of both ChatGPT-4, especially its newly introduced features such as live internet browsing or plugins, and the GBD study, we may enhance personalized healthcare planning. This innovative approach has the potential to improve patient outcomes and optimize resource utilization, as well as pave the way for the worldwide implementation of precision medicine, thereby revolutionizing the existing healthcare landscape. However, to fully harness these benefits at both the global and individual levels, further research and development are warranted. This will ensure that we effectively tap into the potential of this synergy, bringing societies closer to a future where personalized healthcare is the norm rather than the exception.Item Exploring Older Adults’ Beliefs About the Use of Intelligent Assistants for Consumer Health Information Management: A Participatory Design Study(JMIR Publications, 2019-12-11) Martin-Hammond, Aqueasha; Vemireddy, Sravani; Rao, Kartik; Human-Centered Computing, School of Informatics and ComputingBackground: Intelligent assistants (IAs), also known as intelligent agents, use artificial intelligence to help users achieve a goal or complete a task. IAs represent a potential solution for providing older adults with individualized assistance at home, for example, to reduce social isolation, serve as memory aids, or help with disease management. However, to design IAs for health that are beneficial and accepted by older adults, it is important to understand their beliefs about IAs, how they would like to interact with IAs for consumer health, and how they desire to integrate IAs into their homes. Objective: We explore older adults’ mental models and beliefs about IAs, the tasks they want IAs to support, and how they would like to interact with IAs for consumer health. For the purpose of this study, we focus on IAs in the context of consumer health information management and search. Methods: We present findings from an exploratory, qualitative study that investigated older adults’ perspectives of IAs that aid with consumer health information search and management tasks. Eighteen older adults participated in a multiphase, participatory design workshop in which we engaged them in discussion, brainstorming, and design activities that helped us identify their current challenges managing and finding health information at home. We also explored their beliefs and ideas for an IA to assist them with consumer health tasks. We used participatory design activities to identify areas in which they felt IAs might be useful, but also to uncover the reasoning behind the ideas they presented. Discussions were audio-recorded and later transcribed. We compiled design artifacts collected during the study to supplement researcher transcripts and notes. Thematic analysis was used to analyze data. Results: We found that participants saw IAs as potentially useful for providing recommendations, facilitating collaboration between themselves and other caregivers, and for alerts of serious illness. However, they also desired familiar and natural interactions with IAs (eg, using voice) that could, if need be, provide fluid and unconstrained interactions, reason about their symptoms, and provide information or advice. Other participants discussed the need for flexible IAs that could be used by those with low technical resources or skills. Conclusions: From our findings, we present a discussion of three key components of participants’ mental models, including the people, behaviors, and interactions they described that were important for IAs for consumer health information management and seeking. We then discuss the role of access, transparency, caregivers, and autonomy in design for addressing participants’ concerns about privacy and trust as well as its role in assisting others that may interact with an IA on the older adults’ behalf.