- Browse by Subject
Browsing by Subject "Channelrhodopsins"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Increased threshold of short-latency motor evoked potentials in transgenic mice expressing Channelrhodopsin-2(PLoS, 2017-05-31) Wu, Wei; Xiong, Wenhui; Zhang, Ping; Chen, Lifang; Fang, Jianqiao; Shields, Christopher; Xu, Xiao-Ming; Jin, Xiaoming; Neurological Surgery, School of MedicineTransgenic mice that express channelrhodopsin-2 or its variants provide a powerful tool for optogenetic study of the nervous system. Previous studies have established that introducing such exogenous genes usually does not alter anatomical, electrophysiological, and behavioral properties of neurons in these mice. However, in a line of Thy1-ChR2-YFP transgenic mice (line 9, Jackson lab), we found that short-latency motor evoked potentials (MEPs) induced by transcranial magnetic stimulation had a longer latency and much lower amplitude than that of wild type mice. MEPs evoked by transcranial electrical stimulation also had a much higher threshold in ChR2 mice, although similar amplitudes could be evoked in both wild and ChR2 mice at maximal stimulation. In contrast, long-latency MEPs evoked by electrically stimulating the motor cortex were similar in amplitude and latency between wild type and ChR2 mice. Whole-cell patch clamp recordings from layer V pyramidal neurons of the motor cortex in ChR2 mice revealed no significant differences in intrinsic membrane properties and action potential firing in response to current injection. These data suggest that corticospinal tract is not accountable for the observed abnormality. Motor behavioral assessments including BMS score, rotarod, and grid-walking test showed no significant differences between the two groups. Because short-latency MEPs are known to involve brainstem reticulospinal tract, while long-latency MEPs mainly involve primary motor cortex and dorsal corticospinal tract, we conclude that this line of ChR2 transgenic mice has normal function of motor cortex and dorsal corticospinal tract, but reduced excitability and responsiveness of reticulospinal tracts. This abnormality needs to be taken into account when using these mice for related optogenetic study.Item Optogenetics: Background, Methodological Advances and Potential Applications for Cardiovascular Research and Medicine(Frontiers Media, 2020-01-29) Joshi, Jyotsna; Rubart, Michael; Zhu, Wuqiang; Pediatrics, School of MedicineOptogenetics is an elegant approach of precisely controlling and monitoring the biological functions of a cell, group of cells, tissues, or organs with high temporal and spatial resolution by using optical system and genetic engineering technologies. The field evolved with the need to precisely control neurons and decipher neural circuity and has made great accomplishments in neuroscience. It also evolved in cardiovascular research almost a decade ago and has made considerable progress in both in vitro and in vivo animal studies. Thus, this review is written with an objective to provide information on the evolution, background, methodical advances, and potential scope of the field for cardiovascular research and medicine. We begin with a review of literatures on optogenetic proteins related to their origin, structure, types, mechanism of action, methods to improve their performance, and the delivery vehicles and methods to express such proteins on target cells and tissues for cardiovascular research. Next, we reviewed historical and recent literatures to demonstrate the scope of optogenetics for cardiovascular research and regenerative medicine and examined that cardiac optogenetics is vital in mimicking heart diseases, understanding the mechanisms of disease progression and also in introducing novel therapies to treat cardiac abnormalities, such as arrhythmias. We also reviewed optogenetics as promising tools in providing high-throughput data for cardiotoxicity screening in drug development and also in deciphering dynamic roles of signaling moieties in cell signaling. Finally, we put forth considerations on the need of scaling up of the optogenetic system, clinically relevant in vivo and in silico models, light attenuation issues, and concerns over the level, immune reactions, toxicity, and ectopic expression with opsin expression. Detailed investigations on such considerations would accelerate the translation of cardiac optogenetics from present in vitro and in vivo animal studies to clinical therapies.