- Browse by Subject
Browsing by Subject "Cerebrovascular circulation"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Cerebral Blood Flow in the Salience Network of Individuals with Alcohol Use Disorder(Oxford University Press, 2022) Butcher, Tarah J.; Chumin, Evgeny J.; West, John D.; Dzemidzic, Mario; Yoder, Karmen K.; Radiology and Imaging Sciences, School of MedicineAims: Magnetic resonance imaging (MRI) studies have identified structural and functional differences in salience network nodes of individuals with alcohol use disorders (AUDs) after chronic exposure to alcohol. However, no studies have investigated cerebral blood flow (CBF) in nontreatment-seeking (NTS) individuals with AUD. Methods: In this work, we sought to quantify putative CBF deficits in NTS individuals relative to social drinking (SD) controls and determine if CBF in the salience network is associated with AUD severity. Fifteen NTS (36.5 ± 11.2 years old, 30.0 ± 22.7 drinks/week) and 22 SD (35.6 ± 11.9 years old, 9.1 ± 5.7 drinks/week) underwent pseudocontinuous arterial spin labeling MRI. Results: Compared with social drinkers, NTS individuals had significantly lower CBF in the right and left dorsal anterior insula, and the left ventral anterior and posterior insula. The Alcohol Use Disorder Identification Test (AUDIT) score showed a significant negative relationship with CBF in the bilateral caudal anterior cingulate cortex. In addition, a significant negative correlation was present between number of standard drinks consumed per week and the left frontal opercular CBF. Conclusion: These results provide evidence that insular CBF is negatively associated with heavy drinking, and that severity of alcohol use is related to CBF deficits in key nodes of the salience network. Longitudinal data are needed to understand if disruptions of CBF in the insula and the salience network are a predisposition for or a consequence of chronic AUD.Item Early Brain and Abdominal Oxygenation in Extremely Low Birth Weight Infants(Springer Nature, 2022) Chock, Valerie Y.; Smith, Emily; Tan, Sylvia; Ball, M. Bethany; Das, Abhik; Hintz, Susan R.; Kirpalani, Haresh; Bell, Edward F.; Chalak, Lina F.; Cotten, C. Michael; Widness, John A.; Kennedy, Kathleen A.; Ohls, Robin K.; Seabrook, Ruth B.; Patel, Ravi M.; Laptook, Abbot R.; Mancini, Toni; Sokol, Gregory M.; Walsh, Michele C.; Yoder, Bradley A.; Poindexter, Brenda B.; Chawla, Sanjay; D’Angio, Carl T.; Higgins, Rosemary D.; Van Meurs, Krisa P.; Eunice Kennedy Shriver National Institute of Child Health and Human Development Neonatal Research Network; Pediatrics, School of MedicineBackground: Extremely low birth weight (ELBW) infants are at risk for end-organ hypoxia and ischemia. Regional tissue oxygenation of the brain and gut as monitored with near-infrared spectroscopy (NIRS) may change with postnatal age, but normal ranges are not well defined. Methods: A prospective study of ELBW preterm infants utilized NIRS monitoring to assess changes in cerebral and mesenteric saturation (Csat and Msat) over the first week after birth. This secondary study of a multicenter trial comparing hemoglobin transfusion thresholds assessed cerebral and mesenteric fractional tissue oxygen extraction (cFTOE and mFTOE) and relationships with perinatal variables. Results: In 124 infants, both Csat and Msat declined over the first week, with a corresponding increase in oxygen extraction. With lower gestational age, lower birth weight, and 5-min Apgar score ≤5, there was a greater increase in oxygen extraction in the brain compared to the gut. Infants managed with a lower hemoglobin transfusion threshold receiving ≥2 transfusions in the first week had the lowest Csat and highest cFTOE (p < 0.001). Conclusion: Brain oxygen extraction preferentially increased in more immature and anemic preterm infants. NIRS monitoring may enhance understanding of cerebral and mesenteric oxygenation patterns and inform future protective strategies in the preterm ELBW population. Impact: Simultaneous monitoring of cerebral and mesenteric tissue saturation demonstrates the balance of oxygenation between preterm brain and gut and may inform protective strategies. Over the first week, oxygen saturation of the brain and gut declines as oxygen extraction increases. A low hemoglobin transfusion threshold is associated with lower cerebral saturation and higher cerebral oxygen extraction compared to a high hemoglobin transfusion threshold, although this did not translate into clinically relevant differences in the TOP trial primary outcome. Greater oxygen extraction by the brain compared to the gut occurs with lower gestational age, lower birth weight, and 5-min Apgar score ≤5.Item How Can We Make BOLD Contrast Bolder?(American Society of Neuroradiology, 2002-04) Li, Tie Qiang; Mathews, Vincent P.; Radiology and Imaging Sciences, School of Medicine