ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Cerebrospinal fluid (CSF)"

Now showing 1 - 10 of 10
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    APOE effect on Alzheimer's disease biomarkers in older adults with significant memory concern
    (Elsevier, 2015-12) Risacher, Shannon L.; Kim, Sungeun; Nho, Kwangsik; Foroud, Tatiana; Shen, Li; Peterson, Ronald C.; Jack Jr, Clifford R.; Beckett, Laurel A.; Aisen, Paul S.; Koeppe, Robert A.; Jagust, William J.; Shaw, Leslie M.; Trojanowski, John Q.; Department of Radiology and Imaging Sciences, IU School of Medicine
    INTRODUCTION: This study assessed apolipoprotein E (APOE) ε4 carrier status effects on Alzheimer's disease imaging and cerebrospinal fluid (CSF) biomarkers in cognitively normal older adults with significant memory concerns (SMC). METHODS: Cognitively normal, SMC, and early mild cognitive impairment participants from Alzheimer's Disease Neuroimaging Initiative were divided by APOE ε4 carrier status. Diagnostic and APOE effects were evaluated with emphasis on SMC. Additional analyses in SMC evaluated the effect of the interaction between APOE and [(18)F]Florbetapir amyloid positivity on CSF biomarkers. RESULTS: SMC ε4+ showed greater amyloid deposition than SMC ε4-, but no hypometabolism or medial temporal lobe (MTL) atrophy. SMC ε4+ showed lower amyloid beta 1-42 and higher tau/p-tau than ε4-, which was most abnormal in APOE ε4+ and cerebral amyloid positive SMC. DISCUSSION: SMC APOE ε4+ show abnormal changes in amyloid and tau biomarkers, but no hypometabolism or MTL neurodegeneration, reflecting the at-risk nature of the SMC group and the importance of APOE in mediating this risk.
  • Loading...
    Thumbnail Image
    Item
    Author Correction: Predicting Alzheimer’s disease progression using multi-modal deep learning approach
    (Springer Nature, 2023-08-01) Lee, Garam; Nho, Kwangsik; Kang, Byungkon; Sohn, Kyung‑Ah; Kim, Dokyoon; Alzheimer’s Disease Neuroimaging Initiative; Radiology and Imaging Sciences, School of Medicine
    Correction to: Scientific Reports 10.1038/s41598-018-37769-z, published online 13 February 2019 This Article contains errors. A Supplementary Information file was omitted from the original version of this Article. The Supplementary Information file is now linked to this correction notice.
  • Loading...
    Thumbnail Image
    Item
    Blood-based biomarkers for Alzheimer's disease and related dementias: Keys to success and things to consider
    (Elsevier, 2019-11-14) Zetterberg, Henrik; Apostolova, Liana G.; Snyder, Peter J.; Radiology and Imaging Sciences, School of Medicine
    During the last two decades, considerable progress has been made in the field of fluid and imaging biomarkers for neurodegenerative dementias. As a result, the most recent research and clinical guidelines (the National Institute on Aging and Alzheimer's Association, International Working Group 2, National Institute for Health and Care Excellence) incorporate cerebrospinal fluid (CSF) and positron emission tomography (PET) biomarkers in the diagnostic criteria of dementia and mild cognitive impairment due to Alzheimer's disease (AD) [[1], [2], [3]]. However, as both CSF and amyloid PET examinations require expert knowledge and are of limited availability outside specialized memory clinics, there is no doubt that blood tests would be much easier to implement in clinical medicine and as screening tools when recruiting patients for clinical trials.
  • Loading...
    Thumbnail Image
    Item
    Neuroimaging and Other Biomarkers for Alzheimer's Disease: The Changing Landscape of Early Detection
    (Annual Reviews, 2013) Risacher, Shannon L.; Saykin, Andrew J.; Radiology and Imaging Sciences, School of Medicine
    The goal of this review is to provide an overview of biomarkers for Alzheimer's disease (AD), with emphasis on neuroimaging and cerebrospinal fluid (CSF) biomarkers. We first review biomarker changes in patients with late-onset AD, including findings from studies using structural and functional magnetic resonance imaging (MRI), advanced MRI techniques (diffusion tensor imaging, magnetic resonance spectroscopy, perfusion), positron emission tomography with fluorodeoxyglucose, amyloid tracers, and other neurochemical tracers, and CSF protein levels. Next, we evaluate findings from these biomarkers in preclinical and prodromal stages of AD including mild cognitive impairment (MCI) and pre-MCI conditions conferring elevated risk. We then discuss related findings in patients with dominantly inherited AD. We conclude with a discussion of the current theoretical framework for the role of biomarkers in AD and emergent directions for AD biomarker research.
  • Loading...
    Thumbnail Image
    Item
    Parenchymal border macrophages regulate the flow dynamics of the cerebrospinal fluid
    (Springer, 2022-11-09) Drieu, Antoine; Du, Siling; Storck, Steffen E.; Rustenhoven, Justin; Papadopoulos, Zachary; Dykstra, Taitea; Zhong, Fenghe; Kim, Kyungdeok; Blackburn, Susan; Mamuladze, Tornike; Harari, Oscar; Karch, Celeste M.; Bateman, Randall J.; Perrin, Richard; Farlow, Martin; Chhatwal, Jasmeer; Dominantly Inherited Alzheimer Network; Hu, Song; Randolph, Gwendalyn J.; Smirnov, Igor; Kipnis, Jonathan; Neurology, School of Medicine
    Macrophages are important players for the maintenance of tissue homeostasis1. Perivascular and leptomeningeal macrophages reside in close proximity to the central nervous system (CNS) parenchyma2, and their role in CNS physiology has not been well enough studied to date. Given their continuous interaction with the cerebrospinal fluid (CSF) and strategic positioning, we refer to these cells collectively as parenchymal border macrophages (PBMs). Here, we demonstrate that PBMs regulate CSF flow dynamics. We identify a subpopulation of PBMs expressing high levels of CD163 and Lyve1 (scavenger receptor proteins), located in close proximity to the brain arterial tree, and show that Lyve1+ PBMs regulate arterial motion that drives CSF flow. Pharmacological or genetic depletion of PBMs led to accumulation of extracellular matrix proteins, obstructing CSF access to perivascular spaces hence impairing CNS perfusion and clearance. Aging-associated alterations in PBMs and impairment of CSF dynamics were restored upon intracisternal injection of macrophage colony-stimulating growth factor (M-CSF). Human single-nuclei RNA sequencing data obtained from Alzheimer’s disease (AD) patients and healthy controls point to changes in phagocytosis/endocytosis and interferon-gamma (IFNγ) signaling on PBMs, pathways that are corroborated in a mouse AD model. Collectively, our results identify PBMs as novel cellular regulators of CSF flow dynamics, which could potentially be targeted pharmacologically to alleviate brain clearance deficits associated with aging and AD.
  • Loading...
    Thumbnail Image
    Item
    Predicting Alzheimer's disease progression using multi-modal deep learning approach
    (Springer Nature, 2019-02-13) Lee, Garam; Nho, Kwangsik; Kang, Byungkon; Sohn, Kyung-Ah; Kim, Dokyoon; Radiology and Imaging Sciences, School of Medicine
    Alzheimer's disease (AD) is a progressive neurodegenerative condition marked by a decline in cognitive functions with no validated disease modifying treatment. It is critical for timely treatment to detect AD in its earlier stage before clinical manifestation. Mild cognitive impairment (MCI) is an intermediate stage between cognitively normal older adults and AD. To predict conversion from MCI to probable AD, we applied a deep learning approach, multimodal recurrent neural network. We developed an integrative framework that combines not only cross-sectional neuroimaging biomarkers at baseline but also longitudinal cerebrospinal fluid (CSF) and cognitive performance biomarkers obtained from the Alzheimer's Disease Neuroimaging Initiative cohort (ADNI). The proposed framework integrated longitudinal multi-domain data. Our results showed that 1) our prediction model for MCI conversion to AD yielded up to 75% accuracy (area under the curve (AUC) = 0.83) when using only single modality of data separately; and 2) our prediction model achieved the best performance with 81% accuracy (AUC = 0.86) when incorporating longitudinal multi-domain data. A multi-modal deep learning approach has potential to identify persons at risk of developing AD who might benefit most from a clinical trial or as a stratification approach within clinical trials.
  • Loading...
    Thumbnail Image
    Item
    Quantifying Ventricular CSF Clearance in the Human Brain Using Dynamic 18F-FDG PET: Insights into Age-Related Glymphatic Impairment
    (medRxiv, 2025-04-09) Zhou, Zeyu; Zhao, Tianyun; Gardus, John I.; Wen, Qiuting; Feng, Yang; DeLorenzo, Christine; Parsey, Ramin; Huang, Chuan; Radiology and Imaging Sciences, School of Medicine
    Purpose: The glymphatic system facilitates brain waste clearance via cerebrospinal fluid (CSF) flow, and its dysfunction has been linked to aging and neurodegeneration. However, clinically accessible methods to quantify glymphatic function in humans remain limited. This study aimed to examine the potential of dynamic 18F-FDG PET for measuring ventricular CSF clearance - as a surrogate marker of glymphatic function. Specifically, we evaluated its association with age, its test–retest reliability, and the feasibility of reduced scan durations for clinical applicability. Methods: We analyzed 72 baseline 18F-FDG PET scans from participants enrolled in a prior depression trial. Time–activity curves (TACs) were extracted from the lateral ventricles and fitted with a γ-variate model to estimate influx (𝜇𝑖𝑛) and clearance (𝜇𝑜𝑢𝑡) parameters. Associations with age and clinical factors were examined using correlation and multiple linear regression. Test–retest reliability was assessed in 11 placebo-treated participants who underwent repeat scans eight weeks apart. A feasibility analysis tested whether shorter scan windows could yield comparable clearance estimates. Results: 𝜇𝑜𝑢𝑡 showed a strong negative correlation with age (r = −0.680, p < 0.001), while 𝜇𝑖𝑛 was not significantly age-related. Age remained a significant predictor of 𝜇𝑜𝑢𝑡 after adjusting for sex, ventricle size, and depression severity. A positive association between 𝜇𝑜𝑢𝑡 and depression severity was observed after covariate adjustment. Test–retest analysis yielded an intraclass correlation coefficient of 0.702 for 𝜇𝑜𝑢𝑡, indicating moderate-to-good reproducibility. A shortened 30-minute scan window (starting 30 minutes post injection) preserved strong correlations with both 𝜇𝑜𝑢𝑡 and age, supporting the potential for abbreviated imaging protocols. Conclusion: Dynamic 18F-FDG PET provides a reliable and noninvasive method to quantify ventricular CSF clearance, revealing age-related decline indicative of glymphatic impairment. The method demonstrates reproducibility over time and retains key clearance metrics even with shortened scan durations. These findings establish a clinically feasible 18F-FDG PET-based approach for studying brain clearance and glymphatic function in aging and disease.
  • Loading...
    Thumbnail Image
    Item
    Resting-State Functional Connectivity Disruption as a Pathological Biomarker in Autosomal Dominant Alzheimer Disease
    (Mary Ann Liebert, 2021) Smith, Robert X.; Strain, Jeremy F.; Tanenbaum, Aaron; Fagan, Anne M.; Hassenstab, Jason; McDade, Eric; Schindler, Suzanne E.; Gordon, Brian A.; Xiong, Chengjie; Chhatwal, Jasmeer; Jack, Clifford, Jr.; Karch, Celeste; Berman, Sarah; Brosch, Jared R.; Lah, James J.; Brickman, Adam M.; Cash, David M.; Fox, Nick C.; Graff-Radford, Neill R.; Levin, Johannes; Noble, James; Holtzman, David M.; Masters, Colin L.; Farlow, Martin R.; Laske, Christoph; Schofield, Peter R.; Marcus, Daniel S.; Morris, John C.; Benzinger, Tammie L. S.; Bateman, Randall J.; Ances, Beau M.; Neurology, School of Medicine
    Aim: Identify a global resting-state functional connectivity (gFC) signature in mutation carriers (MC) from the Dominantly Inherited Alzheimer Network (DIAN). Assess the gFC with regard to amyloid (A), tau (T), and neurodegeneration (N) biomarkers, and estimated years to symptom onset (EYO). Introduction: Cross-sectional measures were assessed in MC (n = 171) and mutation noncarrier (NC) (n = 70) participants. A functional connectivity (FC) matrix that encompassed multiple resting-state networks was computed for each participant. Methods: A global FC was compiled as a single index indicating FC strength. The gFC signature was modeled as a nonlinear function of EYO. The gFC was linearly associated with other biomarkers used for assessing the AT(N) framework, including cerebrospinal fluid (CSF), positron emission tomography (PET) molecular biomarkers, and structural magnetic resonance imaging. Results: The gFC was reduced in MC compared with NC participants. When MC participants were differentiated by clinical dementia rating (CDR), the gFC was significantly decreased in MC CDR >0 (demented) compared with either MC CDR 0 (cognitively normal) or NC participants. The gFC varied nonlinearly with EYO and initially decreased at EYO = −24 years, followed by a stable period followed by a further decline near EYO = 0 years. Irrespective of EYO, a lower gFC associated with values of amyloid PET, CSF Aβ1–42, CSF p-tau, CSF t-tau, 18F-fluorodeoxyglucose, and hippocampal volume. Conclusions: The gFC correlated with biomarkers used for defining the AT(N) framework. A biphasic change in the gFC suggested early changes associated with CSF amyloid and later changes associated with hippocampal volume.
  • Loading...
    Thumbnail Image
    Item
    The role of apolipoprotein E (APOE) genotype in early mild cognitive impairment (E-MCI)
    (Frontiers Media, 2013-04-01) Risacher, Shannon L.; Kim, Sungeun; Shen, Li; Nho, Kwangsik; Foroud, Tatiana; Green, Robert C.; Petersen, Ronald C.; Jack, Clifford R., Jr.; Aisen, Paul S.; Koeppe, Robert A.; Jagust, William J.; Shaw, Leslie M.; Trojanowski, John Q.; Weiner, Michael W.; Saykin, Andrew J.; Alzheimer’s Disease Neuroimaging Initiative (ADNI); Radiology and Imaging Sciences, School of Medicine
    Objective: Our goal was to evaluate the association of APOE with amyloid deposition, cerebrospinal fluid levels (CSF) of Aβ, tau, and p-tau, brain atrophy, cognition and cognitive complaints in E-MCI patients and cognitively healthy older adults (HC) in the ADNI-2 cohort. Methods: Two-hundred and nine E-MCI and 123 HC participants from the ADNI-2 cohort were included. We evaluated the impact of diagnostic status (E-MCI vs. HC) and APOE ε4 status (ε4 positive vs. ε4 negative) on cortical amyloid deposition (AV-45/Florbetapir SUVR PET scans), brain atrophy (structural MRI scans processed using voxel-based morphometry and Freesurfer version 5.1), CSF levels of Aβ, tau, and p-tau, and cognitive performance and complaints. Results: E-MCI participants showed significantly impaired cognition, higher levels of cognitive complaints, greater levels of tau and p-tau, and subcortical and cortical atrophy relative to HC participants (p < 0.05). Cortical amyloid deposition and CSF levels of Aβ were significantly associated with APOE ε4 status but not E-MCI diagnosis, with ε4 positive participants showing more amyloid deposition and lower levels of CSF Aβ than ε4 negative participants. Other effects of APOE ε4 status on cognition and CSF tau levels were also observed. Conclusions: APOE ε4 status is associated with amyloid accumulation and lower CSF Aβ, as well as increased CSF tau levels in early prodromal stages of AD (E-MCI) and HC. Alternatively, neurodegeneration, cognitive impairment, and increased complaints are primarily associated with a diagnosis of E-MCI. These findings underscore the importance of considering APOE genotype when evaluating biomarkers in early stages of disease.
  • Loading...
    Thumbnail Image
    Item
    Type 2 diabetes mellitus and cerebrospinal fluid Alzheimer's disease biomarker amyloid β1-42 in Alzheimer's Disease Neuroimaging Initiative participants
    (2017-11-23) Li, Wei; Risacher, Shannon L.; Gao, Sujuan; Boehm, Stephen L.; Elmendorf, Jeffrey S.; Saykin, Andrew J.; Radiology and Imaging Sciences, School of Medicine
    Introduction Type 2 diabetes mellitus (T2DM) is a risk factor for Alzheimer's disease. Cerebrospinal fluid (CSF) amyloid β (Aβ) 1-42 is an important Alzheimer's disease biomarker. However, it is inconclusive on how T2DM is related to CSF Aβ1-42. Methods Participants with T2DM were selected from the Alzheimer's Disease Neuroimaging Initiative by searching keywords from the medical history database. A two-way analysis of covariance model was used to analyze how T2DM associates with CSF Aβ1-42 or cerebral cortical Aβ. Results CSF Aβ1-42 was higher in the T2DM group than the nondiabetic group. The inverse relation between CSF Aβ1-42 and cerebral cortical Aβ was independent of T2DM status. Participants with T2DM had a lower cerebral cortical Aβ in anterior cingulate, precuneus, and temporal lobe than controls. Discussion T2DM is positively associated with CSF Aβ1-42 but negatively with cerebral cortical Aβ. The decreased cerebral cortical Aβ associated with T2DM is preferentially located in certain brain regions.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University