- Browse by Subject
Browsing by Subject "Cerebral amyloid angiopathy (CAA)"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Presenilin-1 mutation position influences amyloidosis, small vessel disease, and dementia with disease stage(Wiley, 2024) Joseph-Mathurin, Nelly; Feldman, Rebecca L.; Lu, Ruijin; Shirzadi, Zahra; Toomer, Carmen; Saint Clair, Junie R.; Ma, Yinjiao; McKay, Nicole S.; Strain, Jeremy F.; Kilgore, Collin; Friedrichsen, Karl A.; Chen, Charles D.; Gordon, Brian A.; Chen, Gengsheng; Hornbeck, Russ C.; Massoumzadeh, Parinaz; McCullough, Austin A.; Wang, Qing; Li, Yan; Wang, Guoqiao; Keefe, Sarah J.; Schultz, Stephanie A.; Cruchaga, Carlos; Preboske, Gregory M.; Jack, Clifford R., Jr.; Llibre-Guerra, Jorge J.; Allegri, Ricardo F.; Ances, Beau M.; Berman, Sarah B.; Brooks, William S.; Cash, David M.; Day, Gregory S.; Fox, Nick C.; Fulham, Michael; Ghetti, Bernardino; Johnson, Keith A.; Jucker, Mathias; Klunk, William E.; la Fougère, Christian; Levin, Johannes; Niimi, Yoshiki; Oh, Hwamee; Perrin, Richard J.; Reischl, Gerald; Ringman, John M.; Saykin, Andrew J.; Schofield, Peter R.; Su, Yi; Supnet-Bell, Charlene; Vöglein, Jonathan; Yakushev, Igor; Brickman, Adam M.; Morris, John C.; McDade, Eric; Xiong, Chengjie; Bateman, Randall J.; Chhatwal, Jasmeer P.; Benzinger, Tammie L. S.; Dominantly Inherited Alzheimer Network; Pathology and Laboratory Medicine, School of MedicineIntroduction: Amyloidosis, including cerebral amyloid angiopathy, and markers of small vessel disease (SVD) vary across dominantly inherited Alzheimer's disease (DIAD) presenilin-1 (PSEN1) mutation carriers. We investigated how mutation position relative to codon 200 (pre-/postcodon 200) influences these pathologic features and dementia at different stages. Methods: Individuals from families with known PSEN1 mutations (n = 393) underwent neuroimaging and clinical assessments. We cross-sectionally evaluated regional Pittsburgh compound B-positron emission tomography uptake, magnetic resonance imaging markers of SVD (diffusion tensor imaging-based white matter injury, white matter hyperintensity volumes, and microhemorrhages), and cognition. Results: Postcodon 200 carriers had lower amyloid burden in all regions but worse markers of SVD and worse Clinical Dementia Rating® scores compared to precodon 200 carriers as a function of estimated years to symptom onset. Markers of SVD partially mediated the mutation position effects on clinical measures. Discussion: We demonstrated the genotypic variability behind spatiotemporal amyloidosis, SVD, and clinical presentation in DIAD, which may inform patient prognosis and clinical trials. Highlights: Mutation position influences Aβ burden, SVD, and dementia. PSEN1 pre-200 group had stronger associations between Aβ burden and disease stage. PSEN1 post-200 group had stronger associations between SVD markers and disease stage. PSEN1 post-200 group had worse dementia score than pre-200 in late disease stage. Diffusion tensor imaging-based SVD markers mediated mutation position effects on dementia in the late stage.Item Tau ablation rescues vascular amyloid‐related deficits in a cerebral amyloid angiopathy model(Wiley, 2025-01-03) Mardones, Muriel D.; Jury, Nur; Juarez, Enrique Chimal; Patel, Henika; Martinez, Jonathan; Vanderbosch, Katie; Perkins, Abigail; Marambio, Yamil; Vidal, Ruben; Lasagna Reeves, Cristian A.; Anatomy, Cell Biology and Physiology, School of MedicineBackground: Close to 80 to 90% of subjects with AD also present cerebral amyloid angiopathy (CAA) a disease in which amyloid accumulation damages the vasculature and impairs blood flow. Since current AD therapies are targeting the disease focusing on amyloid, we are interested on determine how to decrease the accumulation of amyloid in the vasculature observed in CAA and our aim is to determine the impact of tau reduction in CAA pathogenesis. Method: We crossed the Tg‐FDD mice CAA model with Mapt‐/‐ mice to decrease tau levels and analyzed the disease pathogenesis in the different genotypes though behavioral tests, histological and morphometric assays and transcriptomic analysis using the nCounter neuroimmflamation panel from Nanostring. Result: We determined that tau ablation improved motor strength in the Tg‐FDD mice model, reduced amyloid deposition in the vasculature, decrease fibrinogen levels in the cortex, reduced astrocyte branching process associated to immunoreactivity. Nanostring analysis revealed that microglia function, oligodendrocyte and cytokine signaling are altered in the Tg‐FDD mice and that in the Tg‐FDD, Mapt ‐/‐ mice there is an increase in this mechanisms restoring the values to the ones observed in wild type mice. Conclusion: We are currently evaluating the pathways observed in the distinct inflammatory profile in microglia and oligodendrocytes. Our results suggest that tau ablation decreased CAA pathology in the Tg‐FDD mice model, which shows the potential therapeutic implications of targeting tau in CAA and related neurodegenerative diseases.Item Unraveling Vascular and Parenchymal Microenvironment Changes in Patients with Mixed CAA/AD Pathology: A Spatial Transcriptomic In‐Depth Analysis(Wiley, 2025-01-03) Juarez, Enrique Chimal; Garfe, Nur Jury; Redding, Javier; Troncoso, Juan C.; Johnson, Travis S.; Lasagna Reeves, Cristian A.; Anatomy, Cell Biology and Physiology, School of MedicineBackground: Cerebral amyloid angiopathy (CAA), defined as the accumulation of amyloid in cerebral blood vessels causing alterations in the blood brain barrier (BBB) and the gliovascular unit, occurs in over 85% of Alzheimer’s disease (AD) cases, positioning CAA as one of the strongest vascular contributors to age‐related cognitive decline. However, the specific mechanisms in the microvasculature that become altered due to amyloid deposition and its downstream effects on the brain are complex and incompletely understood. A spatial transcriptomic analysis comparing pathways affected in the gliovascular niche differently in the presence of vascular amyloid could provide critical insight into the mechanisms underlying cerebrovascular changes involved in the deposition of Amyloid in the cerebrovasculature. Method: Using NanoString’s GeoMx Human Whole Transcriptome Atlas, which measures over 18,000 protein‐coding genes at each region of interest (ROI) in tissue sections, we evaluated mixed CAA/AD pathology patients. We evaluated and performed selected pair wise comparisons between 4 types of ROI: 1) Astrocytes surrounding vascular amyloid, 2) astrocytes surrounding amyloid‐free vasculature, 3) astrocytes surrounding parenchymal amyloid, & 4) astrocytes in an amyloid‐free parenchymal zone. Result: Conducting pairwise comparisons among the four types of Regions of Interest (ROIs) unveiled distinctive transcriptomic signatures across ROI categories. Notably, gene expression profiles in regions of vasculature positive for Aβ‐amyloid differed significantly from those in amyloid‐free vasculature, showcasing pronounced gene expression changes. While the signatures corresponding to both Parenchymal amyloid and vascular amyloid have a similar transcriptional signature, they differ in certain pathways. Through meticulous data mining, we identified a co‐expression cluster of genes intricately linked to vascular amyloid deposition. Further analysis involved determining Differentially Expressed Genes (DEGs) based on ROI types, yielding a comprehensive list of potential targets indicative of the perturbations induced by vascular amyloid deposition versus parenchymal amyloid deposition. Conclusion: In summary, the identified differential (parenchymal vs vascular) genes underscore a clear association with alterations in the neurovascular microenvironment, indicating a discernible shift in vasculature dynamics attributed to amyloid presence. This observation emphasizes the significance of comprehending the changes within the vascular unit to address Cerebral Amyloid Angiopathy (CAA) thoroughly to develop comprehensive strategies to tackle CAA‐related challenges.