- Browse by Subject
Browsing by Subject "Cerebellum"
Now showing 1 - 10 of 25
Results Per Page
Sort Options
Item Altered cerebellar-cortical resting-state functional connectivity in cannabis users(Sage, 2021) Schnakenberg Martin, Ashley M.; Kim, Dae-Jin; Newman, Sharlene D.; Cheng, Hu; Hetrick, William P.; Mackie, Ken; O’Donnell, Brian F.; Psychiatry, School of MedicineBackground: Cannabis use has been associated with abnormalities in cerebellar mediated motor and non-motor (i.e. cognition and personality) phenomena. Since the cerebellum is a region with high cannabinoid type 1 receptor density, these impairments may reflect alterations of signaling between the cerebellum and other brain regions. Aims: We hypothesized that cerebellar-cortical resting-state functional connectivity (rsFC) would be altered in cannabis users, relative to their non-using peers. It was also hypothesized that differences in rsFC would be associated with cannabis use features, such as age of initiation and lifetime use. Methods: Cerebellar-cortical and subcortical rsFCs were computed between 28 cerebellar lobules, defined by a spatially unbiased atlas template of the cerebellum, and individual voxels in the cerebral regions, in 41 regular cannabis users (20 female) and healthy non-using peers (N = 31; 18 female). We also investigated associations between rsFC and cannabis use features (e.g. lifetime cannabis use and age of initiation). Results: Cannabis users demonstrated hyperconnectivity between the anterior cerebellar regions (i.e. lobule I-IV) with the posterior cingulate cortex, and hypoconnectivity between the rest of the cerebellum (i.e. Crus I and II, lobule VIIb, VIIIa, VIIIb, IX, and X) and the cortex. No associations were observed between features of cannabis use and rsFC. Conclusions: Cannabis use was associated with altered patterns of rsFC from the cerebellum to the cerebral cortex which may have a downstream impact on behavior and cognition.Item Cerebellar Activation Deficits in Schizophrenia During an Eyeblink Conditioning Task(Oxford University Press, 2021-08-28) Lundin, Nancy B.; Kim, Dae-Jin; Tullar, Rachel L.; Moussa-Tooks, Alexandra B.; Kent, Jerillyn S.; Newman, Sharlene D.; Purcell, John R.; Bolbecker, Amanda R.; O’Donnell, Brian F.; Hetrick, William P.; Psychiatry, School of MedicineThe cognitive dysmetria theory of psychotic disorders posits that cerebellar circuit abnormalities give rise to difficulties coordinating motor and cognitive functions. However, brain activation during cerebellar-mediated tasks is understudied in schizophrenia. Accordingly, this study examined whether individuals with schizophrenia have diminished neural activation compared to controls in key regions of the delay eyeblink conditioning (dEBC) cerebellar circuit (eg, lobule VI) and cerebellar regions associated with cognition (eg, Crus I). Participants with schizophrenia-spectrum disorders (n = 31) and healthy controls (n = 43) underwent dEBC during functional magnetic resonance imaging (fMRI). Images were normalized using the Spatially Unbiased Infratentorial Template (SUIT) of the cerebellum and brainstem. Activation contrasts of interest were "early" and "late" stages of paired tone and air puff trials minus unpaired trials. Preliminary whole brain analyses were conducted, followed by cerebellar-specific SUIT and region of interest (ROI) analyses of lobule VI and Crus I. Correlation analyses were conducted between cerebellar activation, neuropsychological test scores, and psychotic symptom scores. In controls, the largest clusters of cerebellar activation peaked in lobule VI during early dEBC and Crus I during late dEBC. The schizophrenia group showed robust cortical activation to unpaired trials but no significant conditioning-related cerebellar activation. Crus I ROI activation during late dEBC was greater in the control than schizophrenia group. Greater Crus I activation correlated with higher working memory scores in the full sample and lower positive psychotic symptom severity in schizophrenia. Findings indicate functional cerebellar abnormalities in schizophrenia which relate to psychotic symptoms, lending direct support to the cognitive dysmetria framework.Item Cerebellar Structure and Function in Autism Spectrum Disorder(Hapres, 2022) Bloomer, Bess F.; Morales, Jaime J.; Bolbecker, Amanda R.; Kim, Dae-Jin; Hetrick, William P.; Psychiatry, School of MedicineAutism spectrum disorder (ASD) is a heterogeneous neurodevelopmental condition characterized by early-onset repetitive behaviors, restricted interests, sensory and motor difficulties, and impaired social interactions. Converging evidence from neuroimaging, lesion and postmortem studies, and rodent models suggests cerebellar involvement in ASD and points to promising targets for therapeutic interventions for the disorder. This review elucidates understanding of cerebellar mechanisms in ASD by integrating and contextualizing recent structural and functional cerebellar research.Item Cerebellar tDCS consistency and metabolite changes: A recommendation to decrease barriers to replicability(Elsevier, 2020-11) Moussa-Tooks, Alexandra B.; Burroughs, Leah P.; Rejimon, Abinand C.; Cheng, Hu; Hetrick, William P.; Psychiatry, School of MedicineItem Congenital disorder of glycosylation – one size does not fit all: a parent’s perspective(Sage, 2022-08-22) Feinberg, Konstantin; Surgery, School of MedicineThis article is written by the parent of a child living with PMM2-congenital disorder of glycosylation (abbreviated to PMM2-CDG). It provides a parental perspective of the journey taken from diagnosis to present day and details the effect of off-label treatment with epalrestat.Item Gray matter density loss in essential tremor: a lobule by lobule analysis of the cerebellum(BMC, 2017-07-03) Dyke, Jonathan P.; Cameron, Eric; Hernandez, Nora; Dydak, Ulrike; Louis, Elan D.; Radiology and Imaging Sciences, School of MedicineBACKGROUND: The pathophysiological basis for essential tremor (ET) remains unclear, although evidence increasingly links it to a disordered and perhaps degenerative cerebellum. Prior imaging studies have treated the cerebellum en bloc. Our hypothesis was that regional differences in cerebellar gray matter (GM) density may better distinguish ET cases from controls. Forty-seven ET cases and 36 control subjects were imaged using magnetic resonance imaging (MRI). The cerebellum was segmented into 34 lobes using a Spatially Unbiased Infra-Tentorial Template (SUIT) atlas within the Statistical Parametric Mapping (SPM) analysis package. Age, gender and Montreal Cognitive Assessment (MoCA) scores were regressed out from the statistical models to isolate group effects. ET cases were further stratified into phenotypically-defined subgroups. The Benjamini-Hochberg False Discovery Rate procedure (BH FDR) (α = 0.1) was used to correct for multiple comparisons. RESULTS: When all ET cases and controls were compared, none of the regions met the BH FDR criteria for significance. When compared with controls, ET cases with head or jaw tremor (n = 27) had significant changes in GM density in nine cerebellar lobules, with a majority in the left cerebellar region, and each meeting the BH FDR criteria. Likewise, ET cases with voice tremor (n = 22) exhibited significant changes in 11 lobules in both left and right regions and the vermis. These analyses, in sum, indicated decreases in GM density in lobules I-IV, V, VI, VII and VIII as well as the vermis. ET cases with severe tremor (n = 20) did not show regions of change that survived the BH FDR procedure when compared to controls. CONCLUSIONS: We showed that ET cases with various forms of cranial tremor differed from controls with respect to cerebellar GM density, with evidence of GM reduction across multiple cerebellar regions. Additional work, using a lobule-by-lobule approach, is needed to confirm these results and precisely map the regional differences in ET cases, subgroups of ET cases, and controls.Item Identification of novel cDNAs expressed in murine cerebellum(1993) Kambouris, MariosItem Impaired Cerebellar-Dependent Eyeblink Conditioning in First-Degree Relatives of Individuals With Schizophrenia(Oxford University Press, 2014-09) Bolbecker, Amanda R.; Kent, Jerillyn S.; Petersen, Isaac T.; Klaunig, Mallory J.; Forsyth, Jennifer K.; Howell, Josselyn M.; Westfall, Daniel R.; O’Donnell, Brian F.; Hetrick, William P.; Department of Psychiatry, IU School of MedicineConsistent with reports of cerebellar structural, functional, and neurochemical anomalies in schizophrenia, robust cerebellar-dependent delay eyeblink conditioning (dEBC) deficits have been observed in the disorder. Impaired dEBC is also present in schizotypal personality disorder, an intermediate phenotype of schizophrenia. The present work sought to determine whether dEBC deficits exist in nonpsychotic first-degree relatives of individuals with schizophrenia. A single-cue tone dEBC paradigm consisting of 10 blocks with 10 trials each (9 paired and 1 unpaired trials) was used to examine the functional integrity of cerebellar circuitry in schizophrenia participants, individuals with a first-degree relative diagnosed with schizophrenia, and healthy controls with no first-degree relatives diagnosed with schizophrenia. The conditioned stimulus (a 400ms tone) coterminated with the unconditioned stimulus (a 50ms air puff to the left eye) on paired trials. One relative and 2 healthy controls were removed from further analysis due to declining conditioned response rates, leaving 18 schizophrenia participants, 17 first-degree relatives, and 16 healthy controls. Electromyographic data were subsequently analyzed using growth curve models in hierarchical linear regression. Acquisition of dEBC conditioned responses was significantly impaired in schizophrenia and first-degree relative groups compared with controls. This finding that cerebellar-mediated associative learning deficits are present in first-degree relatives of individuals with schizophrenia provides evidence that dEBC abnormalities in schizophrenia may not be due to medication or course of illness effects. Instead, the present results are consistent with models of schizophrenia positing cerebellar-cortical circuit abnormalities and suggest that cerebellar abnormalities represent a risk marker for the disorder.
- «
- 1 (current)
- 2
- 3
- »