ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Cell-mediated cytotoxicity"

Now showing 1 - 4 of 4
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Adrenoceptor modulation of the generation of cell-mediated cytotoxicity
    (1988) Hatfield, Stephen Marshall
  • Loading...
    Thumbnail Image
    Item
    Functional, phenotypic and morphological studies on the mechanism of tumor cytolysis by human natural killer cells
    (1987) Abrams, Scott Irwin
  • Loading...
    Thumbnail Image
    Item
    Role of a putative bacterial lipoprotein in Pseudomonas aeruginosa-mediated cytotoxicity toward airway cells
    (2014) Akhand, Saeed Salehin; Anderson, Gregory G.; Chang, Hua-Chen; Nelson, David; Atkinson, Simon
    The patients with Cystic fibrosis (CF), an inherent genetic disorder, suffer from chronic bacterial infection in the lung. In CF, modification of epithelial cells leads to alteration of the lung environment, such as inhibition of ciliary bacterial clearance and accumulation of thickened mucus in the airways. Exploiting these conditions, opportunistic pathogens like Pseudomonas aeruginosa cause lifelong persistent infection in the CF lung by forming into antibiotic-resistant aggregated communities called biofilms. Airway infections as well as inflammation are the two major presentations of CF lung disease. P. aeruginosa strains isolated from CF lungs often contain mutations in the mucA gene, and this mutation results in higher level expression of bacterial polysaccharides and toxic lipoproteins. In a previous work, we have found a putative lipoprotein gene (PA4326) which is overexpressed in antibiotic-induced biofilm formed on cultured CF-derived airway cells. In the current work, we speculated that this particular putative lipoprotein affects cellular cytotoxicity and immune-stimulation in the epithelial cells. We found that mutation of this gene (ΔPA4326) results in reduced airway cell killing without affecting other common virulence factors.Moreover, we observed that this gene was able to stimulate secretion of the proinflammatory cytokine IL-8 from host cells. Interestingly, we also found that ΔPA4326 mutant strains produced less pyocyanin exotoxin compared to the wild type. Furthermore, our results suggest that PA4326 regulates expression of the pyocyanin biosynthesis gene phzM, leading to the reduced pyocyanin phenotype. Overall, these findings implicate PA4326 as a virulence factor in Pseudomonas aeruginosa. In the future, understating the molecular interplay between the epithelial cells and putative lipoproteins like PA4326 may lead to development of novel anti-inflammatory therapies that would lessen the suffering of CF patients.
  • Loading...
    Thumbnail Image
    Item
    Soypeptide lunasin in cytokine immunotherapy for lymphoma
    (2014-08-01) Lewis, David; Chang, Hua-Chen; Skalnik, David Gordon; Watson, John C., 1953-; Atkinson, Simon
    Immunostimulatory cytokines can enhance anti-tumor immunity and are part of the therapeutic armamentarium for cancer treatment. We previously reported that chemotherapy-treated lymphoma patients acquire a deficiency of Signal Transducer and Activator of Transcription 4 (STAT4), which results in defective IFNy production during clinical immunotherapy. With the goal of further improvement in cytokine-based immunotherapy, we examined the effects of a soybean peptide called lunasin that exhibits immunostimulatory effects on natural killer cells (NKCs). Peripheral blood mononucleated cells (PBMCs) from healthy donors and chemotherapy-treated lymphoma patients were stimulated with or without lunasin in the presence of IL-12 or IL-2. NK activation was evaluated, and its tumoricidal activity was assessed using in vitro and in vivo tumor models. Chromatin immunoprecipitation (ChIP) assay was performed to evaluate the histone modification of gene loci that are regulated by lunasin and cytokine. Adding lunasin to IL-12- or IL-2-cultuted NK cells demonstrated synergistic effects in the induction of IFNG and genes involved in cytotoxicity. The combination of lunasin and cytokines (IL-12 plus IL-2) was capable of restoring IFNy production by NK cells from post-transplant lymphoma patients. In addition, NK cells stimulated with lunasin plus cytokines have higher tumoricidal activity than those stimulated with cytokines alone using in vitro tumor models. The underlying mechanism responsible for the effects of lunasin on NK cells is likely due to epigenetic modulation at target gene loci. Lunasin represents a different class of immune modulating agent that may augment the therapeutic responses mediated by cytokine-based immunotherapy.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University