- Browse by Subject
Browsing by Subject "Cell Line, Tumor"
Now showing 1 - 10 of 11
Results Per Page
Sort Options
Item Changes in mRNA/protein expression and signaling pathways in in vivo passaged mouse ovarian cancer cells(Public Library of Science, 2018-06-21) Cai, Qingchun; Fan, Qipeng; Buechlein, Aaron; Miller, David; Nephew, Kenneth P.; Liu, Sheng; Wan, Jun; Xu, Yan; Obstetrics and Gynecology, School of MedicineThe cure rate for late stage epithelial ovarian cancer (EOC) has not significantly improved over several decades. New and more effective targets and treatment modalities are urgently needed. RNA-seq analyses of a syngeneic EOC cell pair, representing more and less aggressive tumor cells in vivo were conducted. Bioinformatics analyses of the RNA-seq data and biological signaling and function studies have identified new targets, such as ZIP4 in EOC. Many up-regulated tumor promoting signaling pathways have been identified which are mainly grouped into three cellular activities: 1) cell proliferation and apoptosis resistance; 2) cell skeleton and adhesion changes; and 3) carbohydrate metabolic reprograming. Unexpectedly, lipid metabolism has been the major down-regulated signaling pathway in the more aggressive EOC cells. In addition, we found that hypoxic responsive genes were at the center stage of regulation and detected functional changes were related to cancer stem cell-like activities. Moreover, our genetic, cellular, biochemical, and lipidomic analyses indicated that cells grown in 2D vs. 3D, or attached vs. suspended had dramatic changes. The important clinical implications of peritoneal cavity floating tumor cells are supported by the data proved in this work. Overall, the RNA-seq data provide a landscape of gene expression alterations during tumor progression.Item Development of AlphaLISA high throughput technique to screen for small molecule inhibitors targeting protein arginine methyltransferases(Royal Society of Chemistry, 2017-11-21) Prabhu, Lakshmi; Chen, Lan; Wei, Han; Demir, Özlem; Safa, Ahmad; Zeng, Lifan; Amaro, Rommie E.; O’Neil, Bert H.; Zhang, Zhongyin; Lu, Tao; Pharmacology and Toxicology, School of MedicineThe protein arginine methyltransferase (PRMT) family of enzymes comprises nine family members in mammals. They catalyze arginine methylation, either monomethylation or symmetric/asymmetric dimethylation of histone and non-histone proteins. PRMT methylation of its substrate proteins modulates cellular processes such as signal transduction, transcription, and mRNA splicing. Recent studies have linked overexpression of PRMT5, a member of the PRMT superfamily, to oncogenesis, making it a potential target for cancer therapy. In this study, we developed a highly sensitive (Z' score = 0.7) robotic high throughput screening (HTS) platform to discover small molecule inhibitors of PRMT5 by adapting the AlphaLISA™ technology. Using biotinylated histone H4 as a substrate, and S-adenosyl-l-methionine as a methyl donor, PRMT5 symmetrically dimethylated H4 at arginine (R) 3. Highly specific acceptor beads for symmetrically dimethylated H4R3 and streptavidin-coated donor beads bound the substrate, emitting a signal that is proportional to the methyltransferase activity. Using this powerful approach, we identified specific PRMT5 inhibitors P1608K04 and P1618J22, and further validated their efficacy and specificity for inhibiting PRMT5. Importantly, these two compounds exhibited much more potent efficacy than the commercial PRMT5 inhibitor EPZ015666 in both pancreatic and colorectal cancer cells. Overall, our work highlights a novel, powerful, and sensitive approach to identify specific PRMT5 inhibitors. The general principle of this HTS screening method can not only be applied to PRMT5 and the PRMT superfamily, but may also be extended to other epigenetic targets. This approach allows us to identify compounds that inhibit the activity of their respective targets, and screening hits like P1608K04 and P1618J22 may serve as the basis for novel drug development to treat cancer and/or other diseases.Item Effects of a checkpoint kinase inhibitor, AZD7762, on tumor suppression and bone remodeling(Spandidos Publications, 2018-09) Wang, Luqi; Wang, Yue; Chen, Andy; Jalali, Aydin; Liu, Shengzhi; Guo, Yunxia; Na, Sungsoo; Nakshatri, Harikrishna; Li, Bai-Yan; Yokota, Hiroki; Biomedical Engineering, School of Engineering and TechnologyChemotherapy for suppressing tumor growth and metastasis tends to induce various effects on other organs. Using AZD7762, an inhibitor of checkpoint kinase (Chk) 1 and 2, the present study examined its effect on mammary tumor cells in addition to bone cells (osteoclasts, osteoblasts and osteocytes), using monolayer cell cultures and three-dimensional (3D) cell spheroids. The results revealed that AZD7762 blocked the proliferation of 4T1.2 mammary tumor cells and suppressed the development of RAW264.7 pre-osteoclast cells by downregulating nuclear factor of activated T cells cytoplasmic 1. AZD7762 also promoted the mineralization of MC3T3 osteoblast-like cells and 3D bio-printed bone constructs of MLO-A5 osteocyte spheroids. While a Chk1 inhibitor, PD407824, suppressed the proliferation of tumor cells and the differentiation of pre-osteoclasts, its effect on gene expression in osteoblasts was markedly different compared with AZD7762. Western blotting indicated that the stimulating effect of AZD7762 on osteoblast development was associated with the inhibition of Chk2 and the downregulation of cellular tumor antigen p53. The results of the present study indicated that in addition to acting as a tumor suppressor, AZD7762 may prevent bone loss by inhibiting osteoclastogenesis and stimulating osteoblast mineralization.Item ETS1 is a genome-wide effector of RAS/ERK signaling in epithelial cells(Oxford, 2014-10-29) Plotnik, Joshua P.; Budka, Justin A.; Ferris, Mary W.; Hollenhorst, Peter C.; Medicine, School of MedicineThe RAS/ERK pathway is commonly activated in carcinomas and promotes oncogenesis by altering transcriptional programs. However, the array of cis-regulatory elements and trans-acting factors that mediate these transcriptional changes is still unclear. Our genome-wide analysis determined that a sequence consisting of neighboring ETS and AP-1 transcription factor binding sites is enriched near cell migration genes activated by RAS/ERK signaling in epithelial cells. In vivo screening of candidate ETS proteins revealed that ETS1 is specifically required for migration of RAS/ERK activated cells. Furthermore, both migration and transcriptional activation through ETS/AP-1 required ERK phosphorylation of ETS1. Genome-wide mapping of multiple ETS proteins demonstrated that ETS1 binds specifically to enhancer ETS/AP-1 sequences. ETS1 occupancy, and its role in cell migration, was conserved in epithelial cells derived from multiple tissues, consistent with a chromatin organization common to epithelial cell lines. Genome-wide expression analysis showed that ETS1 was required for activation of RAS-regulated cell migration genes, but also identified a surprising role for ETS1 in the repression of genes such as DUSP4, DUSP6 and SPRY4 that provide negative feedback to the RAS/ERK pathway. Consistently, ETS1 was required for robust RAS/ERK pathway activation. Therefore, ETS1 has dual roles in mediating epithelial-specific RAS/ERK transcriptional functions.Item Hydroxyindole carboxylic acid-based inhibitors for receptor-type protein tyrosine protein phosphatase beta(Mary Ann Liebert, Inc., 2014-05-10) Zeng, Li-Fan; Zhang, Ruo-Yu; Bai, Yunpeng; Wu, Li; Zhang, Zhong-Yin; Department of Biochemistry & Molecular Biology, IU School of MedicineAIMS: Protein tyrosine phosphatases (PTPs) play an important role in regulating a wide range of cellular processes. Understanding the role of PTPs within these processes has been hampered by a lack of potent and selective PTP inhibitors. Generating potent and selective probes for PTPs remains a significant challenge because of the highly conserved and positively charged PTP active site that also harbors a redox-sensitive Cys residue. RESULTS: We describe a facile method that uses an appropriate hydroxyindole carboxylic acid to anchor the inhibitor to the PTP active site and relies on the secondary binding elements introduced through an amide-focused library to enhance binding affinity for the target PTP and to impart selectivity against off-target phosphatases. Here, we disclose a novel series of hydroxyindole carboxylic acid-based inhibitors for receptor-type tyrosine protein phosphatase beta (RPTPβ), a potential target that is implicated in blood vessel development. The representative RPTPβ inhibitor 8b-1 (L87B44) has an IC50 of 0.38 μM and at least 14-fold selectivity for RPTPβ over a large panel of PTPs. Moreover, 8b-1 also exhibits excellent cellular activity and augments growth factor signaling in HEK293, MDA-MB-468, and human umbilical vein endothelial cells. INNOVATION: The bicyclic salicylic acid pharmacophore-based focused library approach may provide a potential solution to overcome the bioavailability issue that has plagued the PTP drug discovery field for many years. CONCLUSION: A novel method is described for the development of bioavailable PTP inhibitors that utilizes bicyclic salicylic acid to anchor the inhibitors to the active site and peripheral site interactions to enhance binding affinity and selectivity.Item Inflammatory Chemokines MIP-1δ and MIP-3α Are Involved in the Migration of Multipotent Mesenchymal Stromal Cells Induced by Hepatoma Cells(Mary Ann Liebert, Inc., 2015-05-15) Lejmi, Esma; Perriraz, Nadja; Clement, Sophie; Morel, Philippe; Baertschiger, Reto; Christofilopoulos, Panayiotis; Meier, Raphael; Bosco, Domenico; Gonelle-Gispert, Carmen; Buhler, Leo H.; Department of Surgery, IU School of MedicineIn vivo, bone marrow-derived multipotent mesenchymal stromal cells (MSC) have been identified at sites of tumors, suggesting that specific signals mobilize and activate MSC to migrate to areas surrounding tumors. The signals and migratory mechanisms that guide MSC are not well understood. Here, we investigated the migration of human MSC induced by conditioned medium of Huh-7 hepatoma cells (Huh-7 CM). Using a transwell migration system, we showed that human MSC migration was increased in the presence of Huh-7 CM. Using a human cytokine antibody array, we detected increased levels of MIP-1δ and MIP-3α in Huh-7 CM. Recombinant chemokines MIP-1δ and MIP-3α induced MSC migration. Anti-MIP-1δ and anti-MIP-3α antibodies added to Huh-7 CM decreased MSC migration, further suggesting that MIP-1δ and MIP-3α were implicated in the Huh-7 CM-induced MSC migration. By real-time polymerase chain reaction, we observed an absence of chemokine receptors CCR2 and CXCR2 and low expression of CCR1, CCR5, and CCR6 in MSC. Expression of these chemokine receptors was not regulated by Huh-7 CM. Furthermore, matrix metalloproteinase 1 (MMP-1) expression was strongly increased in MSC after incubation with Huh-7 CM, suggesting that MSC migration depends on MMP-1 activity. The signaling pathway MAPK/ERK was activated by Huh-7 CM but its inhibition by PD98059 did not impair Huh-7 CM-induced MSC migration. Further, long-term incubation of MSC with MIP-1δ increased α-smooth muscle actin expression, suggesting its implication in the Huh-7 CM-induced evolvement of MSC into myofibroblasts. In conclusion, we report that two inflammatory cytokines, MIP-1δ and MIP-3α, are able to increase MSC migration in vitro. These cytokines might be responsible for migration and evolvement of MSC into myofibroblasts around tumors.Item A mathematical model of bimodal epigenetic control of miR-193a in ovarian cancer stem cells(PLoS, 2014-12-29) Cheng, Frank H.C.; Aguda, Baltazar; Tsai, Je-Chiang; Kochanczyk, Marek; Lin, Jora M.J.; Chen, Gary C.W.; Lai, Hung-Cheng; Nephew, Kenneth P.; Hwang, Tzy-Wei; Chan, Michael W.Y.; Department of Cellular and Integrative Physiology, IU School of MedicineAccumulating data indicate that cancer stem cells contribute to tumor chemoresistance and their persistence alters clinical outcome. Our previous study has shown that ovarian cancer may be initiated by ovarian cancer initiating cells (OCIC) characterized by surface antigen CD44 and c-KIT (CD117). It has been experimentally demonstrated that a microRNA, namely miR-193a, targets c-KIT mRNA for degradation and could play a crucial role in ovarian cancer development. How miR-193a is regulated is poorly understood and the emerging picture is complex. To unravel this complexity, we propose a mathematical model to explore how estrogen-mediated up-regulation of another target of miR-193a, namely E2F6, can attenuate the function of miR-193a in two ways, one through a competition of E2F6 and c-KIT transcripts for miR-193a, and second by binding of E2F6 protein, in association with a polycomb complex, to the promoter of miR-193a to down-regulate its transcription. Our model predicts that this bimodal control increases the expression of c-KIT and that the second mode of epigenetic regulation is required to generate a switching behavior in c-KIT and E2F6 expressions. Additional analysis of the TCGA ovarian cancer dataset demonstrates that ovarian cancer patients with low expression of EZH2, a polycomb-group family protein, show positive correlation between E2F6 and c-KIT. We conjecture that a simultaneous EZH2 inhibition and anti-estrogen therapy can constitute an effective combined therapeutic strategy against ovarian cancer.Item PRMT4 blocks myeloid differentiation by assembling a methyl-RUNX1-dependent repressor complex(Elsevier B.V., 2013-12-26) Vu, Ly P.; Perna, Fabiana; Wang, Lan; Voza, Francesca; Figueroa, Maria E.; Tempst, Paul; Erdjument-Bromage, Hediye; Gao, Rui; Chen, Sisi; Paietta, Elisabeth; Deblasio, Tony; Melnick, Ari; Liu, Yan; Zhao, Xinyang; Nimer, Stephen D.; Department of Pediatrics, IU School of MedicineDefining the role of epigenetic regulators in hematopoiesis has become critically important, as recurrent mutations or aberrant expression of these genes has been identified in both myeloid and lymphoid hematological malignancies. We found that PRMT4, a type I arginine methyltransferase, whose function in normal and malignant hematopoiesis is unknown, is overexpressed in AML patient samples. Overexpression of PRMT4 blocks the myeloid differentiation of human stem/progenitor cells (HSPCs) while its knockdown is sufficient to induce myeloid differentiation of HSPCs. We demonstrated that PRMT4 represses the expression of miR-223 in HSPCs via the methylation of RUNX1, which triggers the assembly of a multi-protein repressor complex that includes DPF2. As part of a feedback loop, PRMT4 expression is repressed post-transcriptionally by miR-223. Depletion of PRMT4 results in differentiation of myeloid leukemia cells in vitro and their decrease proliferation in vivo. Thus, targeting PRMT4 holds potential as a novel therapy for acute myelogenous leukemia.Item PSIP1/p75 promotes tumorigenicity in breast cancer cells by promoting the transcription of cell cycle genes(Oxford University Press, 2017-10-01) Singh, Deepak K.; Gholamalamdari, Omid; Jadaliha, Mahdieh; Li, Xiao Ling; Lin, Yo-Chuen; Zhang, Yang; Guang, Shuomeng; Hashemikhabir, Seyedsasan; Tiwari, Saumya; Zhu, Yuelin J.; Khan, Abid; Thomas, Anu; Chakraborty, Arindam; Macias, Virgilia; Balla, Andre K.; Bhargava, Rohit; Janga, Sarath Chandra; Ma, Jian; Prasanth, Supriya G.; Lal, Ashish; Prasanth, Kannanganattu V.; BioHealth Informatics, School of Informatics and ComputingBreast cancer (BC) is a highly heterogeneous disease, both at the pathological and molecular level, and several chromatin-associated proteins play crucial roles in BC initiation and progression. Here, we demonstrate the role of PSIP1 (PC4 and SF2 interacting protein)/p75 (LEDGF) in BC progression. PSIP1/p75, previously identified as a chromatin-adaptor protein, is found to be upregulated in basal-like/triple negative breast cancer (TNBC) patient samples and cell lines. Immunohistochemistry in tissue arrays showed elevated levels of PSIP1 in metastatic invasive ductal carcinoma. Survival data analyses revealed that the levels of PSIP1 showed a negative association with TNBC patient survival. Depletion of PSIP1/p75 significantly reduced the tumorigenicity and metastatic properties of TNBC cell lines while its over-expression promoted tumorigenicity. Further, gene expression studies revealed that PSIP1 regulates the expression of genes controlling cell-cycle progression, cell migration and invasion. Finally, by interacting with RNA polymerase II, PSIP1/p75 facilitates the association of RNA pol II to the promoter of cell cycle genes and thereby regulates their transcription. Our findings demonstrate an important role of PSIP1/p75 in TNBC tumorigenicity by promoting the expression of genes that control the cell cycle and tumor metastasis.Item Targeting 17q23 amplicon to overcome the resistance to anti-HER2 therapy in HER2+ breast cancer(Nature Research, 2018-11-09) Liu, Yunhua; Xu, Jiangsheng; Choi, Hyun Ho; Han, Cecil; Fang, Yuanzhang; Li, Yujing; Van der Jeught, Kevin; Xu, Hanchen; Zhang, Lu; Frieden, Michael; Wang, Lifei; Eyvani, Haniyeh; Sun, Yifan; Zhao, Gang; Zhang, Yuntian; Liu, Sheng; Wan, Jun; Huang, Cheng; Ji, Guang; Lu, Xiongbin; He, Xiaoming; Zhang, Xinna; Medical and Molecular Genetics, School of MedicineChromosome 17q23 amplification occurs in ~11% of human breast cancers. Enriched in HER2+ breast cancers, the 17q23 amplification is significantly correlated with poor clinical outcomes. In addition to the previously identified oncogene WIP1, we uncover an oncogenic microRNA gene, MIR21, in a majority of the WIP1-containing 17q23 amplicons. The 17q23 amplification results in aberrant expression of WIP1 and miR-21, which not only promotes breast tumorigenesis, but also leads to resistance to anti-HER2 therapies. Inhibiting WIP1 and miR-21 selectively inhibits the proliferation, survival and tumorigenic potential of the HER2+ breast cancer cells harboring 17q23 amplification. To overcome the resistance of trastuzumab-based therapies in vivo, we develop pH-sensitive nanoparticles for specific co-delivery of the WIP1 and miR-21 inhibitors into HER2+ breast tumors, leading to a profound reduction of tumor growth. These results demonstrate the great potential of the combined treatment of WIP1 and miR-21 inhibitors for the trastuzumab-resistant HER2+ breast cancers.