- Browse by Subject
Browsing by Subject "Caveolae"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item Altered Caveolin-1 Dynamics Result in Divergent Mineralization Responses in Bone and Vascular Calcification(Springer, 2023-08-19) Bakhshian Nik, Amirala; Kaiser, Katherine; Sun, Patrick; Khomtchouk, Bohdan B.; Hutcheson, Joshua D.; Biomedical Engineering and Informatics, Luddy School of Informatics, Computing, and EngineeringIntroduction: Though vascular smooth muscle cells adopt an osteogenic phenotype during pathological vascular calcification, clinical studies note an inverse correlation between bone mineral density and arterial mineral-also known as the calcification paradox. Both processes are mediated by extracellular vesicles (EVs) that sequester calcium and phosphate. Calcifying EV formation in the vasculature requires caveolin-1 (CAV1), a membrane scaffolding protein that resides in membrane invaginations (caveolae). Of note, caveolin-1-deficient mice, however, have increased bone mineral density. We hypothesized that caveolin-1 may play divergent roles in calcifying EV formation from vascular smooth muscle cells (VSMCs) and osteoblasts (HOBs). Methods: Primary human coronary artery VSMCs and osteoblasts were cultured for up to 28 days in an osteogenic media. CAV1 expression was knocked down using siRNA. Methyl β-cyclodextrin (MβCD) and a calpain inhibitor were used, respectively, to disrupt and stabilize the caveolar domains in VSMCs and HOBs. Results: CAV1 genetic variation demonstrates significant inverse relationships between bone-mineral density (BMD) and coronary artery calcification (CAC) across two independent epidemiological cohorts. Culture in osteogenic (OS) media increased calcification in HOBs and VSMCs. siRNA knockdown of CAV1 abrogated VSMC calcification with no effect on osteoblast mineralization. MβCD-mediated caveolae disruption led to a 3-fold increase of calcification in VSMCs treated with osteogenic media (p < 0.05) but hindered osteoblast mineralization (p < 0.01). Conversely, stabilizing caveolae by calpain inhibition prevented VSMC calcification (p < 0.05) without affecting osteoblast mineralization. There was no significant difference in CAV1 content between lipid domains from HOBs cultured in OS and control media. Conclusion: Our data indicate fundamental cellular-level differences in physiological and pathophysiological mineralization mediated by CAV1 dynamics. This is the first study to suggest that divergent mechanisms in calcifying EV formation may play a role in the calcification paradox. Supplementary information: The online version contains supplementary material available at 10.1007/s12195-023-00779-7.Item Caveolin and oxidative stress in cardiac pathology(Frontiers Media, 2025-02-18) Zadorozny, Lauren; Du, Jiayue; Supanekar, Neil; Annamalai, Karthik; Yu, Qing; Wang, Meijing; Surgery, School of MedicineCaveolins interact with signaling molecules within caveolae and subcellular membranes. Dysregulation of caveolin function and protein abundance contributes to cardiac pathophysiological processes, driving the development and progression of heart disease. Reactive oxygen species (ROS) play a critical role in maintaining cellular homeostasis and are key contributors to the pathophysiological mechanisms of cardiovascular disorders. Caveolins have been shown to modulate oxidative stress and regulate redox homeostasis. However, the specific roles of caveolins, particularly caveolin-1 and caveolin-3, in regulating ROS production during cardiac pathology remain unclear. This mini-review article highlights the correlation between caveolins and oxidative stress in maintaining cardiovascular health and modulating cardiac diseases, specifically in myocardial ischemia, heart failure, diabetes-induced metabolic cardiomyopathy, and septic cardiomyopathy. A deeper understanding of caveolin-mediated mechanisms may pave the way for innovative therapeutic approaches to treat cardiovascular diseases.Item Interaction Between Pannexin 1 and Caveolin-1 in Smooth Muscle Can Regulate Blood Pressure(American Heart Association, 2018-09) DeLalio, Leon J.; Keller, Alexander S.; Chen, Jiwang; Boyce, Andrew K. J.; Artamonov, Mykhaylo V.; Askew-Page, Henry R.; Keller, T. C. Stevenson; Johnstone, Scott R.; Weaver, Rachel B.; Good, Miranda E.; Murphy, Sara A.; Best, Angela K.; Mintz, Ellen L.; Penuela, Silvia; Greenwood, Iain A.; Machado, Roberto F.; Somlyo, Avril V.; Swayne, Leigh Anne; Minshall, Richard D.; Isakson, Brant E.; Medicine, School of MedicineObjective- Sympathetic nerve innervation of vascular smooth muscle cells (VSMCs) is a major regulator of arteriolar vasoconstriction, vascular resistance, and blood pressure. Importantly, α-adrenergic receptor stimulation, which uniquely couples with Panx1 (pannexin 1) channel-mediated ATP release in resistance arteries, also requires localization to membrane caveolae. Here, we test whether localization of Panx1 to Cav1 (caveolin-1) promotes channel function (stimulus-dependent ATP release and adrenergic vasoconstriction) and is important for blood pressure homeostasis. Approach and Results- We use in vitro VSMC culture models, ex vivo resistance arteries, and a novel inducible VSMC-specific Cav1 knockout mouse to probe interactions between Panx1 and Cav1. We report that Panx1 and Cav1 colocalized on the VSMC plasma membrane of resistance arteries near sympathetic nerves in an adrenergic stimulus-dependent manner. Genetic deletion of Cav1 significantly blunts adrenergic-stimulated ATP release and vasoconstriction, with no direct influence on endothelium-dependent vasodilation or cardiac function. A significant reduction in mean arterial pressure (total=4 mm Hg; night=7 mm Hg) occurred in mice deficient for VSMC Cav1. These animals were resistant to further blood pressure lowering using a Panx1 peptide inhibitor Px1IL2P, which targets an intracellular loop region necessary for channel function. Conclusions- Translocalization of Panx1 to Cav1-enriched caveolae in VSMCs augments the release of purinergic stimuli necessary for proper adrenergic-mediated vasoconstriction and blood pressure homeostasis.Item ROCK1 deficiency preserves caveolar compartmentalization of signaling molecules and cell membrane integrity(Wiley, 2024-02-23) Shi, Jianjian; Wei, Lei; Pediatrics, School of MedicineIn this study, we investigated the roles of ROCK1 in regulating structural and functional features of caveolae located at the cell membrane of cardiomyocytes, adipocytes, and mouse embryonic fibroblasts (MEFs) as well as related physiopathological effects. Caveolae are small bulb-shaped cell membrane invaginations, and their roles have been associated with disease conditions. One of the unique features of caveolae is that they are physically linked to the actin cytoskeleton that is well known to be regulated by RhoA/ROCKs pathway. In cardiomyocytes, we observed that ROCK1 deficiency is coincident with an increased caveolar density, clusters, and caveolar proteins including caveolin-1 and -3. In the mouse cardiomyopathy model with transgenic overexpressing Gαq in myocardium, we demonstrated the reduced caveolar density at cell membrane and reduced caveolar protein contents. Interestingly, coexisting ROCK1 deficiency in cardiomyocytes can rescue these defects and preserve caveolar compartmentalization of β-adrenergic signaling molecules including β1-adrenergic receptor and type V/VI adenylyl cyclase. In cardiomyocytes and adipocytes, we detected that ROCK1 deficiency increased insulin signaling with increased insulin receptor activation in caveolae. In MEFs, we identified that ROCK1 deficiency increased caveolar and total levels of caveolin-1 and cell membrane repair ability after mechanical or chemical disruptions. Together, these results demonstrate that ROCK1 can regulate caveolae plasticity and multiple functions including compartmentalization of signaling molecules and cell membrane repair following membrane disruption by mechanical force and oxidative damage. These findings provide possible molecular insights into the beneficial effects of ROCK1 deletion/inhibition in cardiomyocytes, adipocytes, and MEFs under certain diseased conditions.Item S-nitrosylation is required for β2AR desensitization and experimental asthma(Elsevier, 2022) Fonseca, Fabio V.; Raffay, Thomas M.; Xiao, Kunhong; McLaughlin, Precious J.; Qian, Zhaoxia; Grimmett, Zachary W.; Adachi, Naoko; Wang, Benlian; Hausladen, Alfred; Cobb, Brian A.; Zhang, Rongli; Hess, Douglas T.; Gaston, Benjamin; Lambert, Nevin A.; Reynolds, James D.; Premont, Richard T.; Stamler, Jonathan S.; Pediatrics, School of MedicineThe β2-adrenergic receptor (β2AR), a prototypic G-protein-coupled receptor (GPCR), is a powerful driver of bronchorelaxation, but the effectiveness of β-agonist drugs in asthma is limited by desensitization and tachyphylaxis. We find that during activation, the β2AR is modified by S-nitrosylation, which is essential for both classic desensitization by PKA as well as desensitization of NO-based signaling that mediates bronchorelaxation. Strikingly, S-nitrosylation alone can drive β2AR internalization in the absence of traditional agonist. Mutant β2AR refractory to S-nitrosylation (Cys265Ser) exhibits reduced desensitization and internalization, thereby amplifying NO-based signaling, and mice with Cys265Ser mutation are resistant to bronchoconstriction, inflammation, and the development of asthma. S-nitrosylation is thus a central mechanism in β2AR signaling that may be operative widely among GPCRs and targeted for therapeutic gain.